Joint Visual System Operational Evaluation (Joint VIS-EVAL) Site 2 McDonnell-Douglas Visual Integrated Display System (VIDS) Evaluation

Author(s):  
James E. Brown ◽  
Harry Daye ◽  
Robert Stice ◽  
Mike Cariello ◽  
John Ayres
2014 ◽  
Vol 651-653 ◽  
pp. 911-915
Author(s):  
Jing Gao ◽  
Yin Liang Jia ◽  
Bing Yang Li

The main research object is the graphics generation and display system based on FPGA, the system is mainly used for the integrated display of aircraft cockpit. The display system has the characteristics of large amount of data, real-time processing in the graphics generation. According to the characters, the paper uses programmable logic device due to FPGA has the advantages of high speed, real time. In order to further improve the efficiency of the system, the paper also designs the ping-pong operation of double SSRAM(Synchronous Static Random Access Memory) at the same time. Through the experiment, the system can run well and achieve the desired objectives.


2020 ◽  
Author(s):  
Samson Chengetanai ◽  
Adhil Bhagwandin ◽  
Mads F. Bertelsen ◽  
Therese Hård ◽  
Patrick R. Hof ◽  
...  

Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


1996 ◽  
Vol 1 (3) ◽  
pp. 200-205 ◽  
Author(s):  
Carlo Umiltà ◽  
Francesca Simion ◽  
Eloisa Valenza

Four experiments were aimed at elucidating some aspects of the preference for facelike patterns in newborns. Experiment 1 showed a preference for a stimulus whose components were located in the correct arrangement for a human face. Experiment 2 showed a preference for stimuli that had optimal sensory properties for the newborn visual system. Experiment 3 showed that babies directed their attention to a facelike pattern even when it was presented simultaneously with a non-facelike stimulus with optimal sensory properties. Experiment 4 showed the preference for facelike patterns in the temporal hemifield but not in the nasal hemifield. It was concluded that newborns' preference for facelike patterns reflects the activity of a subcortical system which is sensitive to the structural properties of the stimulus.


Sign in / Sign up

Export Citation Format

Share Document