Electromagnetic Turbulence Control: Salt Water Experiments on an Axisymmetric Body

2001 ◽  
Author(s):  
Promide R. Bandyopadhyay ◽  
John M. CAstano ◽  
William H. Nedderman ◽  
Daniel P. Thivierge ◽  
Joseph Stupak
2002 ◽  
Vol 457 ◽  
pp. 1-34 ◽  
Author(s):  
YIQING DU ◽  
V. SYMEONIDIS ◽  
G. E. KARNIADAKIS

Computational experiments based on direct numerical simulation of wall-bounded flow reveal that turbulence production can be suppressed by the action of a transverse travelling wave. Flow visualizations show that the near-wall flow structure is altered substantially, compared to other turbulence control techniques, leading to a large amount of shear stress reduction (i.e., more than 30%). The travelling wave can be induced by a spanwise force that is confined within the viscous sublayer, it has its maximum at the wall, and decays exponentially away from it. We demonstrate the robustness of this approach, and its application in salt water using arrays of electro-magnetic tiles that can produce the required travelling wave excitation. We also study corresponding results from spanwise oscillations using a similar force, which also leads to large drag reduction. Although the turbulence statistics for the two approaches are similar, the near-wall structures appear to be different: in the spanwise oscillatory excitation there is a clear presence of wall-streaks whereas in the travelling wave excitation these streaks have disappeared. From the fundamental point of view, the new finding of this work is that appropriate enhancement of the streamwise vortices leads to weakening of the streak intensity, as measured by the normal vorticity component, and correspondingly substantial suppression of turbulence production. From the practical point of view, our findings provide guidance for designing different surface-based actuation techniques including piezoelectric materials, shape memory alloys, and electro-magnetic tiles.


Volume 1 ◽  
2004 ◽  
Author(s):  
Promode R. Bandyopadhyay ◽  
John M. Castano ◽  
Daniel P. Thivierge

The progress made with the control of turbulence in a boundary layer developing over a small axisymmetric body in saltwater at moderate Reynolds numbers is briefly described. A resonance-interference mechanism of control by means of a small periodic Lorenz force confined to the near-wall region, designed to overcome the issue of low efficiency of electromagnetic turbulence control in general, is attempted to alter surface normal turbulence near-wall. At a low momentum thickness Reynolds number of 2300, drag is reduced by 15–25% at a freestream speed of 5.12 m/s with an efficiency of 2–3.4%. Bi-polar pulsing succeeds in lowering surface-normal turbulence intensity near wall. It also makes wall pressure fluctuations less spiky. Positive uni-polar pulsing is found to weaken the sources of wall-pressure fluctuations residing in the logarithmic region of the boundary layer. Further confirmatory work is needed with robust electrodes and drag measurements on a large diameter axisymmetric body.


2006 ◽  
Vol 33 (3) ◽  
pp. 255-264
Author(s):  
O. A. Buraga ◽  
I. G. Nesteruk ◽  
Yu. N. Savchenko

2015 ◽  
Vol 46 (2) ◽  
pp. 107-121
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov

Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


2008 ◽  
Vol 37 (3) ◽  
Author(s):  
Jacek Urbański ◽  
Agata Ślimak

Assessing flood risk and detecting changes of salt water inflow in a coastal micro-tidal brackish marsh using GISIn order to assess changes in salt water inflow and potential flood risks due to sea level rise in a micro-tidal Beka brackish marsh on the Polish Baltic Coast GIS was used. Such wetlands are important elements of coastal zone natural environments. Creating a geodatabase within a GIS system makes it possible to carry out broad analyses of complex systems, such as coastal wetlands. The results indicate that a 40 cm sea-level rise would considerably increase the frequency of flooding in the investigated area, in part because of the small range of the annual sea level oscillations there. A map of the index of changes in saltwater inflow, created with the help of cost-weighted distance (functions), shows that changes which have occurred along the shore, consisting of filling in the drainage channel outlets, have likely had a significant impact on the vegetation of the area.


2018 ◽  
Author(s):  
Timothy Duignan ◽  
Marcel Baer ◽  
Christopher Mundy

<div> <p> </p><div> <div> <div> <p>The surface tension of dilute salt water is a fundamental property that is crucial to understanding the complexity of many aqueous phase processes. Small ions are known to be repelled from the air-water surface leading to an increase in the surface tension in accordance with the Gibbs adsorption isotherm. The Jones-Ray effect refers to the observation that at extremely low salt concentration the surface tension decreases in apparent contradiction with thermodynamics. Determining the mechanism that is responsible for this Jones-Ray effect is important for theoretically predicting the distribution of ions near surfaces. Here we show that this surface tension decrease can be explained by surfactant impurities in water that create a substantial negative electrostatic potential at the air-water interface. This potential strongly attracts positive cations in water to the interface lowering the surface tension and thus explaining the signature of the Jones-Ray effect. At higher salt concentrations, this electrostatic potential is screened by the added salt reducing the magnitude of this effect. The effect of surface curvature on this behavior is also examined and the implications for unexplained bubble phenomena is discussed. This work suggests that the purity standards for water may be inadequate and that the interactions between ions with background impurities are important to incorporate into our understanding of the driving forces that give rise to the speciation of ions at interfaces. </p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document