scholarly journals Metabolic engineering of Saccharomyces cerevisiae for production of medium-chain fatty acids and their derivatives

2021 ◽  
Author(s):  
◽  
Florian Wernig

The oleochemical and petrochemical industries provide diverse chemicals used in personal care products, food and pharmaceutical industries or as fuels, oils, polymers and others. However, fossil resources are dwindling and concerns about these conventional production methods have risen due to their strong negative impact on the environment and contribution to climate change. Therefore, alternative, sustainable and environmentally friendly production methods for oleochemical compounds such as fatty acids, fatty alcohols, hydroxy fatty acids and dicarboxylic acids are desired. The biotechnological production by engineered microorganism could fulfill these requirements. The concept of metabolic engineering, which is the modification of metabolic pathways of a host organism for increased production of a target compound, is a widely used strategy in biotechnology to generate cell factories or chassis strains for robust, efficient and high production. In this work, the versatile model and industrial yeast Saccharomyces cerevisiae was manipulated by metabolic engineering strategies for increased production of the medium-chain fatty acid octanoic acid and de novo production the derived 8-hydroxyoctanoic acid. Octanoic acid production was enabled by the fatty acid biosynthesis pathway by use of a mutated fatty acid synthase (FASRK) in a wild type FAS deficient strain. The yeast fatty acid synthase (FAS) consists of two polypeptides, α and β, which assemble to a α6β6 complex in a co-translational manner by interaction of the subunits. Because this step might be subject to cellular regulation, the α- and β- subunits of fatty acid synthase were fused to form a single-chain construct (fusFASRK), which displayed superior octanoic acid production compared with split FASRK. Thus, FASRK expression was identified as a limiting step of octanoic acid production. But the strains that produce octanoic acid have a severe growth defect that is undesirable for biotechnological applications and could lead to lower production titers. One reason is the strong inhibitory effect of octanoic acid. Another possibility is that the mutant FAS no longer produces enough essential long-chain fatty acids. To compensate for this, the mutated split and fused FAS variants were co-expressed individually in a strain harboring genomic wild type FAS alleles. In addition, mutant and wild type variants of fused and split FAS were co-expressed together in a FAS deficient strain. However, both cases resulted in decreased octanoic acid titers potentially by physical and/or metabolic crosstalk of the FAS variants. The fatty acid biosynthesis relies on cytosolic acetyl-CoA for initiation and derived malonyl-CoA for elongation and requires NADPH for reductive power. To increase production of octanoic acid, engineering strategies for increased acetyl-CoA and NADHP supply were investigated. First, the flux through the native cytosolic acetyl-CoA and NADPH providing pyruvate dehydrogenase bypass was enhanced by overexpression of the target genes ADH2, ALD6 and ACSL461P from Salmonella enterica in combination or individually. Next, the acety-CoA forming heterologous phosphoketolase/phosphotransacetylase pathway was expressed and NADPH formation was increased by redirecting the flux of glucose-6-phosphate into the NADPH producing oxidative branch of the pentose phosphate pathway. In particular, the flux through glycolysis and pyruvate dehydrogenase bypass was reduced by downregulating the expression of the phosphoglucose isomerase PGI1 and deleting the acetaldehyde dehydrogenase ALD6. Glucose-6-phosphate was guided into the pentose phosphate pathway by overexpressing the glucose-6-phosphate dehydrogenase ZWF1. The first approach did not influence octanoic acid production but the latter increased yields in the glucose consumption phase by 65 %. However, combining the superior fusFASRK with acetyl-CoA and NADPH supply engineering strategies did not result in additive production effects, indicating that other limitations hinder high octanoic acid accumulation. Limitations could be caused in particular by the strong inhibitory effects of octanoic acid or by intrinsic limitations of the FASRK mutant. To enlarge the octanoic acid production platform towards other derived valuable oleochemical compounds the de novo production of 8-hydroxyoctanoic acid was targeted. Since short- and medium-chain fatty acids have a strong inhibitory effect on Saccharomyces cerevisiae, the inhibitory effect of hydroxy fatty acid and dicarboxylic with eight or ten carbon atoms were compared and revealed only little or no growth impairment. Subsequently, the formation of 8-hydroxyoctanoic acid was targeted by a terminal hydroxylation of externally supplied octanoic acid in a bioconversion. For that, three heterologous genes, encoding for cytochromes P450 enzymes and their cognate cytochrome P450 reductases were expressed and 8-hydroxyoctanoic acid production was compared. In addition, the use of different carbon sources was compared. ...

2000 ◽  
Vol 28 (6) ◽  
pp. 567-574 ◽  
Author(s):  
J. Ohlrogge ◽  
M. Pollard ◽  
X. Bao ◽  
M. Focke ◽  
T. Girke ◽  
...  

For over 25 years there has been uncertainty over the pathway from CO2, to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1–1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of 13CO2 and 14CO2 movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered 14C appears in fatty acids within < 2–3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50%, oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide ‘global’ control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced micro-arrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1–2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues has allowed the tissue-specific expression patterns of many hundreds of genes to be described for the first time. Approx. 10% of the genes were expressed at ratios ≥ 10-fold higher in seeds than in leaves or roots. Included in this list are a large number of proteins of unknown function, and potential regulatory factors such as protein kinases, phosphatases and transcription factors. The arrays were also found to be useful for analysis of Brassica seeds.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yiming Zhang ◽  
Mo Su ◽  
Ning Qin ◽  
Jens Nielsen ◽  
Zihe Liu

Abstract Background Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


2021 ◽  
Vol 26 (5) ◽  
pp. 2971-2978
Author(s):  
EMAN TAWFIK HUSSIEN ◽  
◽  
MOHAMMED IBRAHIM DAHAB ◽  
KAREEM MOHAMMED ABD-ELATTY ◽  
ISLAM HAMDY EL-SHENAWY ◽  
...  

Zea mays is an important crop and an essential source of fatty acids. Hence, increasing and adding new fatty acids led to the enhancement of these properties. Transformation of external Acetyl-CoA gene (Aco) can enhance fatty acid components, as ACo is expressed into Acetyl-CoA carboxylase (ACCase) enzyme, which is the first essential step in the fatty acid production process. Chitosan nanoparticles are safe and fast polymer nanoparticles that are applied for gene transformation. Conventional PCR was performed for the detection of the ACo gene in both transgenic and nontransgenic maize lines. The results confirm the presence of the gene in the transgenic lines and absence in non-transgenic lines. The Gas chromatography-mass spectrometry (GC-MS) analysis for fatty acid contents in transgenic and non-transgenic maize lines showed an increase in fatty acid contents in transgenic lines compared to non-transgenic ones. Besides, the transgenic maize’s lines produced extra new fatty acids not found in non-transgenic ones.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Leonie Baumann ◽  
Tyler Doughty ◽  
Verena Siewers ◽  
Jens Nielsen ◽  
Eckhard Boles ◽  
...  

ABSTRACT The medium-chain fatty acid octanoic acid is an important platform compound widely used in industry. The microbial production from sugars in Saccharomyces cerevisiae is a promising alternative to current non-sustainable production methods, however, titers need to be further increased. To achieve this, it is essential to have in-depth knowledge about the cell physiology during octanoic acid production. To this end, we collected the first RNA-Seq data of an octanoic acid producer strain at three time points during fermentation. The strain produced higher levels of octanoic acid and increased levels of fatty acids of other chain lengths (C6–C18) but showed decreased growth compared to the reference. Furthermore, we show that the here analyzed transcriptomic response to internally produced octanoic acid is notably distinct from a wild type's response to externally supplied octanoic acid as reported in previous publications. By comparing the transcriptomic response of different sampling times, we identified several genes that we subsequently overexpressed and knocked out, respectively. Hereby we identified RPL40B, to date unknown to play a role in fatty acid biosynthesis or medium-chain fatty acid tolerance. Overexpression of RPL40B led to an increase in octanoic acid titers by 40%.


2020 ◽  
Author(s):  
Yiming Zhang ◽  
Mo Su ◽  
Ning Qin ◽  
Jens Nielsen ◽  
Zihe Liu

Abstract Background Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The final strain with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acid in shake flask, which was 83.2% higher than the control strain. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


2021 ◽  
Author(s):  
◽  
Leonie Baumann

Octanoic acid (C8 FA) is a medium-chain fatty acid which, in nature, mainly occurs in palm kernel oil and coconuts. It is used in various products including cleaning agents, cosmetics, pesticides and herbicides as well as in foods for preservation or flavoring. Furthermore, it is investigated for medical treatments, for instance, of high cholesterol levels. The cultivation of palm oil plants has surged in the last years to satisfy an increasing market demand. However, concerns about extensive monocultures, which often come along with deforestation of rainforest, have driven the search for more environmentally friendly production methods. A biotechnological production with microbial organisms presents an attractive, more sustainable alternative. Traditionally, the yeast Saccharomyces cerevisiae has been utilized by mankind in bread, wine, and beer making. Based on comprehensive knowledge about its metabolism and genetics, it can nowadays be metabolically engineered to produce a plethora of compounds of industrial interest. To produce octanoic acid, the cytosolic fatty acid synthase (FAS) of S. cerevisiae was utilized and engineered. Naturally, the yeast produces mostly long-chain fatty acids with chain lengths of C16 and C18, and only trace amounts of medium-chain fatty acids, i.e. C8-C14 fatty acids. To generate an S. cerevisiae strain that produces primarily octanoic acid, a mutated version of the FAS was generated (Gajewski et al., 2017) and the resulting S. cerevisiae FASR1834K strain was utilized in this work as a starting strain. The goal of this thesis was to develop and implement strategies to improve the production level of this strain. The current mode of quantification of octanoic acid includes labor-intensive, low-throughput sample preparation and measurement – a main obstacle in generating and screening for improved strain variants. To this end, a main objective of this thesis was the development of a biosensor. The biosensor was based on the pPDR12 promotor, which is regulated by the transcription factor War1. Coupling pPDR12 to GFP as the reporter gene on a multicopy plasmid allowed in vivo detection via fluorescence intensity. The developed biosensor enabled rapid and facile quantification of the short- and medium-chain fatty acids C6, C7 and C8 fatty acids (Baumann et al., 2018). This is the first biosensor that can quantify externally supplied octanoic acid as well as octanoic acid present in the culture supernatant of producer strains with a high linear and dynamic range. Its reliability was validated by correlation of the biosensor signal to the octanoic acid concentrations extracted from culture supernatants as determined by gas chromatography. The biosensor’s ability to detect octanoic acid in a linear range of 0.01-0.75 mM (≈1-110 mg/L), which is within the production range of the starting strain, and a response of up to 10-fold increase in fluorescence after activation was demonstrated. A high-throughput FACS (fluorescence-activated cell sorting) screening of an octanoic acid producer strain library was performed with the biosensor to detect improved strain variants (Baumann et al., 2020a). For this purpose, the biosensor was genomically integrated into an octanoic acid producer strain, resulting in drastically reduced single cell noise. The additional knockout of FAA2 successfully prevented medium-chain fatty acid degradation. A high-throughput screening protocol was designed to include iterative enrichment rounds which decreased false positives. The functionality of the biosensor on single cell level was validated by adding octanoic acid in the range of 0-80 mg/L and subsequent flow cytometric analysis. The biosensor-assisted FACS screening of a plasmid overexpression library of the yeast genome led to the detection of two genetic targets, FSH2 and KCS1, that in combined overexpression enhanced octanoic acid titers by 55 % compared to the parental strain. This was the first report of an effect of FSH2 and KCS1 on fatty acid titers. The presented method can also be utilized to screen other genetic libraries and is a means to facilitate future engineering efforts. In growth tests, the previously reported toxicity of octanoic acid on S. cerevisiae was confirmed. Different strategies were harnessed to create more robust strains. An adaptive laboratory evolution (ALE) experiment was conducted and several rational targets including transporter- (PDR12, TPO1) and transcription factor-encoding genes (PDR1, PDR3, WAR1) as well as the mutated acetyl-CoA carboxylase encoding gene ACC1S1157A were overexpressed or knocked out in producer or non-producer strains, respectively. Despite contrary previous reports for other strain backgrounds, an enhanced robustness was not observable. Suspecting that the utilized laboratory strains have a natively low tolerance level, four industrial S. cerevisiae strains were evaluated in growth assays with octanoic acid and inherently more robust strains were detected, which are suitable future production hosts. ...


2020 ◽  
Author(s):  
Yiming Zhang ◽  
Mo Su ◽  
Ning Qin ◽  
Jens Nielsen ◽  
Zihe Liu

Abstract Background Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. Results Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD + -dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP + -dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). Conclusions We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


2018 ◽  
Vol 73 ◽  
pp. 23-28 ◽  
Author(s):  
Do Hyoung Kim ◽  
In Jung Kim ◽  
Eun Ju Yun ◽  
Suryang Kwak ◽  
Yong-Su Jin ◽  
...  

2017 ◽  
Author(s):  
Paulo Gonçalves Teixeira ◽  
Verena Siewers ◽  
Jens Nielsen

AbstractProduction of fatty acids using engineered Saccharomyces cerevisiae cells is a challenging task in part due to low efficiency of the native fatty acid biosynthesis pathway. One option for improving production efficiency relies on exploring alternative fatty acid production pathways with either improved kinetics, thermodynamics or yield properties.In this work, we explored the reverse β-oxidation pathway as an alternative pathway for free fatty acid production. Different gene combinations and analysis methods were tested for assessing pathway efficiency when expressed in the yeast Saccharomyces cerevisiae. Even though different alternatives were tested, quantitative analysis showed no improvement or major change in fatty acid production of the tested strains in our conditions. This lack of improvement suggests that the tested pathway designs and constructs are either nonfunctional in the tested conditions or the resulting strains lack a metabolic driving force that is needed for a functional pathway.We conclude that expression of the reverse β-oxidation pathway in S. cerevisiae poses many challenges when compared to expression in bacterial systems. These factors gravely hinder development efforts and success rate for producing fatty acids through this pathway.


1999 ◽  
Vol 341 (2) ◽  
pp. 371-376 ◽  
Author(s):  
Marc FORETZ ◽  
Fabienne FOUFELLE ◽  
Pascal FERRÉ

In vivo, polyunsaturated fatty acids (PUFA) inhibit the expression of hepatic genes related to the lipogenic process such as fatty acid synthase and spot-14-protein (S14) genes. In vitro studies have suggested that this was a direct transcriptional effect of PUFA. In hepatocytes, the inhibition of the lipogenic rate by PUFA is not specific, but is linked to a cytotoxic effect due to peroxidative mechanisms. We have investigated whether peroxidation could also explain the inhibitory effect of PUFA on gene expression. Rat hepatocytes were cultured for 24 h with mono-unsaturated or PUFA. PUFA inhibited the expression of fatty acid synthase and S14 genes, and this inhibition was directly related to the number of unsaturations. However, the β-actin and albumin mRNA concentrations were also affected by the most unsaturated fatty acids, suggesting a non-specific effect of PUFA on gene expression. Measurement of lactate dehydrogenase released into the medium indicated a cytotoxicity of PUFA. This was associated with their peroxidation as evaluated by the presence of thiobarbituric acid-reactive substances in the culture medium. The addition of high concentrations of antioxidants abolished lipid peroxidation and lactate dehydrogenase leakage and completely reversed the inhibitory effect of PUFA on gene expression. This suggests (i) that the results obtained previously in cultured hepatocytes in the presence of low concentrations of antioxidants must be interpretated cautiously and (ii) that in vivo, the inhibitory effect of PUFA on lipogenesis-related genes could be indirect through hormonal or metabolic changes or that their effect on gene expression is somehow linked to peroxidative mechanisms.


Sign in / Sign up

Export Citation Format

Share Document