scholarly journals PINE BARK, RICE HULLS, AND OTHER INEXPENSIVE MEDIA FOR GREENHOUSE TOMATO PRODUCTION IN THE SOUTH

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 733d-733
Author(s):  
Richard G. Snyder

Successful greenhouse tomato businesses are able to keep production and quality high while maintaining reasonable cost controls. One way of controlling costs is to use growing media that are locally available in good supply, and therefore of low cost. In Mississippi. as in other states in the southeast, pine bark is an available byproduct resource from the forestry industry; fines (<=95mm diameter) can be used as a growing medium following composting. Rice hulls are a readily available waste product from rice mills, especially in the Mississippi Delta region; these are suitable after being crushed and composted. In comparison to plants grown in rock wool, yield from plants in pine bark fines, rice hulls, or sand were higher, while quality was not significantly different in the l-crop/year system. In a spring crop, yield and quality were higher from plants in pine bark, rice hulls, and rock wool than from those grown in sand. On a per plant basis, cost for the rock wool system, perlite system (pre-bagged), perlite (bulk), peat moss, sand, composted rice hulls, and pine bark lines are $1.50, $1.00, $0.35, $0.60, $0.24, $0.22 and $0.17, respectively. Pine bark and rice hulls are good choices for growing media for greenhouse tomatoes in areas where they are available.

HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1141-1152 ◽  
Author(s):  
Isabelle Lemay ◽  
Jean Caron ◽  
Martine Dorais ◽  
Steeve Pepin

Ongoing research on organic growing media for greenhouse tomato production is driven by the constant changes in the quality, stability, and form of the organic byproducts used in the manufacturing of these media. This study was undertaken to determine appropriate irrigation set points for a sawdust–peat mix (SP) under development given that the performance of this substrate appeared to be strongly dependent on appropriate irrigation management. A greenhouse tomato experiment was conducted to compare different irrigation management approaches for a SP substrate in the spring and summer. Using preliminary measurements from an initial experiment (Expt. 1), different irrigation strategies for the SP substrate were compared in a second experiment (Expt. 2): 1) a variable irrigation regime using a timer control (with frequency adjusted as a function of irradiance); 2) tensiometer control at –1.5 kPa; and 3) two constant substrate water potential devices: –1.1 kPa and –0.9 kPa. An irrigation timer/controller using solar radiation input was used with a rockwool control (RC) substrate. Measurements of plant activity [photosynthesis rate and stomatal conductance (gS)], substrate physical and chemical properties, biomass, and yield were obtained. For all irrigation strategies, results indicated that 10% to 20% higher photosynthesis rates and gS values were obtained with the SP substrate compared with RC. Data indicated that moderate drying conditions (matric potential ranging from –2.2 kPa to –1.5 kPa in Expt. 1 and Expt. 2, respectively) relative to container capacity (–0.6 kPa) were beneficial for improving plant photosynthetic activity and allowed the highest yields for the SP substrate. Variable irrigation management showed higher levels of plant activity than constant watering and increased the oxygen concentration in the substrate by ≈2% in absolute value relative to the constant water potential device. Lower CO2 and N2O levels were also observed with the variable irrigation strategy. On the other hand, maximum nutrient solution savings were achieved with the constant matric potential devices (8% to 31% relative to the RC). This study showed high productivity potential for the SP substrate with suitable irrigation management. Replacing conventional growing media with organic waste-based products using an appropriate irrigation strategy may help to increase the sustainability of the greenhouse industry.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 562D-562c
Author(s):  
Gerard Krewer ◽  
John Ruter ◽  
D. Scott NeSmith ◽  
James Clark ◽  
Tony Otts ◽  
...  

Growing southern highbush blueberries in milled pine bark beds ≈15 cm deep has become a popular fruit production system in Georgia and Florida. One of the primary limiting economic factors in this system is the cost of the growing media, which can exceed $10,000 U.S. per ha. In an effort to discover low-cost substitutes for milled pine bark, available waste or low-cost organic materials were screened for there suitability as growing media for southern highbush blueberries. Cotton gin waste, pecan shells, hardwood “flume” dirt, milled composted urban yard waste, composted urban tree trimmings, pine telephone pole peelings, and pine fence post peelings were evaluated. Only pine derived materials had a suitable pH (<5.3). Fresh pine telephone pole peelings (≈25% bark to 75% elongated fibers of cambial wood) and pine fence post peelings (≈75% bark to 25% elongated fibers of cambial wood) were evaluated for several seasons in containers and field trials. The growth index of blueberries in these materials was slightly less or equal to milled pine bark. Surprisingly, nitrogen deficiency was slight or not a problem. The results indicate that pine pole and post peelings may offer an excellent, low-cost substitute for milled pine bark for blueberry production.


2009 ◽  
Vol 19 (2) ◽  
pp. 395-399 ◽  
Author(s):  
Hanna Y. Hanna

Cultivars and growing media are important components of a successful greenhouse tomato (Solanum lycopersicum) operation. Two studies were conducted simultaneously and independently in two 30 × 96-ft greenhouses in Spring 2006 and 2007 (January–July) to assist producers in selecting appropriate cultivars and reducing production cost. The first study was conducted to evaluate yield, fruit weight, fruit quality, and shelf life of ‘Geronimo’, ‘Quest’, and ‘Trust’ tomatoes planted in perlite and pruned to three or four fruit per cluster. The second study was conducted to determine the initial cost of perlite, pine bark, and rockwool growing media and their effect on yield of ‘Quest’ pruned to three or four fruit per cluster. ‘Geronimo’ produced the highest total marketable yield and ‘Trust’ produced the lowest. ‘Trust’ produced more cull yield and lower fruit weight than ‘Geronimo’ or ‘Quest’. Pruning clusters to three fruit increased total marketable yield and fruit weight, and reduced cull yield of all cultivars. Only ‘Geronimo’ produced higher early marketable yield at four fruit per cluster. All cultivars produced higher early marketable yield in 2007 than in 2006. Tested cultivars had similar fruit content of potassium and sodium and similar concentration of soluble solids. ‘Trust’ fruit had a higher pH than the other two cultivars. About 92% of ‘Quest’ tomatoes remained marketable after storage at 67 °F for 1 week. ‘Geronimo’ and ‘Trust’ had only 83% and 78% marketable fruit, respectively, under the same conditions. Initial costs to grow greenhouse tomatoes in perlite were higher than in rockwool, and were the lowest in pine bark. Plants grown in perlite produced higher total marketable yield than plants grown in either of the other media. They produced lower cull yield than plants grown in rockwool, but produced similar cull yield to plants grown in pine bark. Pruning clusters to three fruit increased total marketable yield and fruit weight in both studies. Pruning clusters to four fruit increased cull yield in both studies regardless of planting year.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1023A-1023
Author(s):  
Brian E. Jackson ◽  
Joe M. Kemble ◽  
Amy N. Wright ◽  
Jeff L. Sibley

Tomatoes are the most abundantly produced greenhouse vegetable crop in the United States. The use of compost substrates has increased in recent years for the greenhouse production of many vegetables, bedding plants, and nursery crops. `Blitz' tomatoes were grown during the spring and fall growing seasons in 2004 in six substrate blends of pine bark (PB), a traditional production substrate in the Southeastern U.S., and cotton gin compost (CGC), an agricultural by-product, to assess the potential use of CGC as a viable replacement for PB for the production of greenhouse tomatoes. Treatments ranged from 100% PB to 100% CGC. During both growing seasons, plants grown in substrates containing CGC produced similar total, marketable, and cull yields compared to plants grown in 100% PB. Substrates containing 40% or more CGC had significantly higher EC levels both initially and throughout both growing seasons than did 20% CGC and 100% PB blends. Initial and final pH of all substrates was similar during both studies and remained within recommended ranges for greenhouse tomato production. Water-holding capacity increased as the percent CGC increased in each substrate blend, indicating the need for less irrigation volume for substrates containing CGC compared to the 100% PB control. Results indicate that CGC can be used as an amendment to or replacement for PB in greenhouse tomato production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Abbas Samadi ◽  
Ebrahim Sepehr ◽  
Amir Rahimi ◽  
Sergey Shabala

AbstractMedicinal plants represent a valuable commodity due to beneficial effects of their natural products on human health, prompting a need for finding a way to optimize/increase their production. In this study, a novel growing media with various perlite particle size and its mixture with peat moss was tested for hydroponic-based production of Echinacea purpurea medicinal plant under greenhouse conditions. The plant growth parameters such as plant height, total fresh leave weight, fresh root weight, total biomass, total chlorophyll, leaf area, and essential oil compositions were assessed. Perlite particle size in the growing media was varied from very coarse (more than 2 mm) to very fine (less than 0.5 mm), and the ratio between perlite and peat moss varied from 50:50 v/v to 30:70 v/v. In addition, two nitrate (NO3−) to ammonium (NH4+) ratios (90:10 and 70:30) were tested for each growing media. The medium containing very fine-grade perlite and 50:50 v/v perlite to peat moss ratio was found to be most optimal and beneficial for E. purpurea performance, resulting in maximal plant height, fresh and dry weight, leaf surface area, and chlorophyll content. It was also found that an increase in NO3−/NH4+ ratio caused a significant increase in plant growth parameters and increase the plant essential oil content. The major terpene hydrocarbons found in extract of E. purpurea with the best growth parameters were germacrene D (51%), myrcene (15%), α-pinene (12%), β-caryophyllene (11%), and 1-Pentadecene (4.4%), respectively. The percentages of these terpene hydrocarbons were increased by increasing of NO3−/NH4+ ratio. It can be concluded that decreasing the perlite particle size and increasing the NO3−/NH4+ ratio increased the plant growth parameters and essential oil compositions in E. purpurea.


2002 ◽  
Vol 82 (4) ◽  
pp. 771-780 ◽  
Author(s):  
X. Hao ◽  
A. P. Papadopoulos

Two full spring season tomato crops (Lycopersicon esculentum Mill. “Trust”) were grown in an open rockwool system with standard rockwool feeding formulae (O-R; conventional method), and in closed rockwool systems with standard rockwool (C-R) or Nutrient Film Technique (C-NFT) feeding formulae (modified in 1997) in 1996 and 1997 to examine the feasibility of a fully closed rockwool production system with appropriate feeding formulae. The closed rockwool system with optimized feeding formulae achieved high marketable yield, similar to that of the open rockwool system. There were no differences in early plant growth, plant biomass or biomass partitioning, and in total fruit yield, size and grades except for the closed rockwool system with the standard rockwool feeding formulae (C-R), which had lower yield than C-NFT in the last month of harvest in 1996. The photosynthesis of old foliage was higher and the root systems at the end of the experiments were rated healthier in plants grown in the closed (C-R and C-NFT) systems than in plants grown in the open (O-R) system. Over 30% of water and fertilizer was saved with the closed systems in comparison to the conventional open system. These results demonstrated that closed rockwool systems with optimized nutrient feedings are economically and environmentally sound alternative methods for greenhouse tomato production in Ontario. Key words: Lycopersicon esculentum, tomato, yield, recycling, rockwool, greenhouse


2008 ◽  
pp. 521-528 ◽  
Author(s):  
A.P. Papadopoulos ◽  
U. Saha ◽  
X. Hao ◽  
S. Khosla

Sign in / Sign up

Export Citation Format

Share Document