scholarly journals Influence of Velvetbean on Southern Root-knot Nematode When Used As Part of the Crop Rotation in Low-input Vegetable Production in Southern Georgia

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 806C-806
Author(s):  
Kathryn E. Brunson ◽  
Sharad C. Phatak ◽  
J. Danny Gay ◽  
Donald R. Sumner

Velvetbean (Mucuna deeringiana L.) has been used as part of the crop rotation in low-input vegetable production in southern Georgia to help suppress populations of root-knot nematode (Meloidogyne incognita) for the past 2 years. Over-wintering cover crops of crimson and subterranean clovers were used the low-input plots and rye was the plow-down cover crop in the conventional plots. Tomatoes, peppers, and eggplant were the vegetable crops grown in these production systems. Following the final harvest in 1992, use of nematicides in the low-input plots was discontinued and velvetbean was then planted into the low-input plots and disked in after 90 days. Results from the 1993–94 soil samples taken before and after velvetbean showed a continuing trend of reduced nematode numbers where velvetbean had been, while most conventional plots that had nematicides applied resulted in increases in nematode populations.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 428b-428
Author(s):  
Kathryn E. Brunson ◽  
Sharad C. Phatak ◽  
J. Danny Gay ◽  
Donald R. Summer

Velvetbean (Mucuna deeringiana L.) was used in crop rotation to determine the influence on southern root-knot nematode (Meloidogyne incognita) in sustainable vegetable production. Replicated trials were conducted at four locations. Two cover crop treatments, crimson clover and subterranean clover, were used in the sustainable plots and rye was the plow-down cover crop for the conventional plots. Selected as the vegetable crops were tomato, pepper, and eggplant. Following the final harvest, velvetbean was planted into the sustainable plots and disked under after 90 days. Results from soil samples before and after velvetbean, indicated the sustainable plots had substantially reduced nematode densities, while most conventional plots showed increases. A correlation between location, treatment, root-gall indexes and nematode density occurred in all crops for 1992. In 1993 there was only a correlation between root-gall index and nematode density in pepper. However, root-gall indexes were significant for location and treatment in all crops.


1999 ◽  
Vol 9 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Ronald D. Morse

Advantages of no-till (NT) production systems are acknowledged throughout the world. During the 1990s, production of NT vegetable crops has increased for both direct seeded and transplanted crops. Increased interest in reduced-tillage systems among research workers and vegetable growers is attributed to: 1) development and commercialization of NT transplanters and seeders, 2) advancements in the technology and practice of producing and managing high-residue cover crop mulches, and 3) improvements and acceptance of integrated weed management techniques. Results from research experiments and grower's fields over the years has shown that success with NT transplanted crops is highly dependent on achieving key production objectives, including: 1) production of dense, uniformly distributed cover crops; 2) skillful management of cover crops before transplanting, leaving a heavy, uniformly distributed killed mulch cover over the soil surface; 3) establishment of transplants into cover crops with minimum disturbance of surface residues and surface soil; and 4) adoption of year-round weed control strategies.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 600-603 ◽  
Author(s):  
Nancy G. Creamer ◽  
Keith R. Baldwin

Summer cover crops can produce biomass, contribute nitrogen to cropping systems, increase soil organic matter, and suppress weeds. Through fixation of atmospheric N2 and uptake of soil residual N, they also contribute to the N requirement of subsequent vegetable crops. Six legumes {cowpea (Vigna unguiculata L.), sesbania (Sesbania exaltata L.), soybean (Glycine max L.), hairy indigo (Indigofera hirsutum L.), velvetbean [Mucuna deeringiana (Bort.) Merr.], and lablab (Lablab purpureus L.)}; two nonlegume broadleaved species [buckwheat (Fagopyrum esculentum Moench) and sesame (Sesamum indicum L.)]; and five grasses {sorghum-sudangrass [Sorghum bicolor (L) Moench × S. sudanense (P) Stapf.], sudangrass [S. sudanense (P) Stapf.], Japanese millet [Echinochloa frumentacea (Roxb.) Link], pearl millet [Pennisetum glaucum (L). R. Br.], and German foxtail millet [Setaria italica (L.) Beauv.)]}, were planted in raised beds alone or in mixtures in 1995 at Plymouth, and in 1996 at Goldsboro, N.C. Biomass production for the legumes ranged from 1420 (velvetbean) to 4807 kg·ha-1 (sesbania). Low velvetbean biomass was attributed to poor germination in this study. Nitrogen in the aboveground biomass for the legumes ranged from 32 (velvetbean) to 97 kg·ha-1 (sesbania). All of the legumes except velvetbean were competitive with weeds. Lablab did not suppress weeds as well as did cover crops producing higher biomass. Aboveground biomass for grasses varied from 3918 (Japanese millet) to 8792 kg·ha-1 (sorghum-sudangrass). While N for the grasses ranged from 39 (Japanese millet) to 88 kg·ha-1 (sorghum-sudangrass), the C: N ratios were very high. Additional N would be needed for fall-planted vegetable crops to overcome immobilization of N. All of the grass cover crops reduced weeds as relative to the weedy control plot. Species that performed well together as a mixture at both sites included Japanese millet/soybean and sorghum-sudangrass/cowpea.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 893A-893
Author(s):  
Kathryn E. Brunson ◽  
C. Robert Stark ◽  
Sharad C. Phatak ◽  
Michael E. Wetzstein

Research results are presented from a multi-year study on vegetable production in southern Georgia that compared two low-input production systems to the conventional rye cover crop technology. The low-input systems use beneficial insect principles as a substitute for conventional pesticide controls, but pesticides are used if needed. Preliminary results from the low-input systems using crimson and subterranean clovers indicate that crimson clover produces better yields and can “catch up” to the conventional rye system. The higher yields of the rye technology can be offset by the cost reductions associated with the low-input technologies. Production budgets were developed for 3 years of eggplant and 2 years of fresh-market tomato and bell pepper to reveal expected net returns under the low-input and conventional systems.


2016 ◽  
Vol 5 (4) ◽  
pp. 46 ◽  
Author(s):  
Mona Ahmadiani ◽  
Chun Li ◽  
Yaqin Liu ◽  
Esendugue Greg Fonsah ◽  
Christine Bliss ◽  
...  

<p class="sar-body"><span lang="EN-US">There are little economic data concerning the profitability of organic vegetable crops in the Southern Coastal Plain, especially in reference to sod-based rotation and tillage alternatives.  A three-year experiment was conducted at the North Florida Research and Education Center-Quincy involving a crop rotation sequence of oats and rye (winter), bush beans (spring), soybean (summer) and broccoli (fall). Bush beans and broccoli were the cash crops. This paper presents analyses of the riskiness of organic production utilizing years in bahiagrass prior to initiating the crop rotation sequence and conventional tillage (CT) versus strip tillage (ST). Methods of “Risk-rated enterprise budget” and “Analyses of Variance-Covariance Matrix (ANOVA)” were utilized for determining relative profitability, and coefficient of variation was applied for measuring riskiness of each treatment. Three years of bahiagrass prior to initiating the crop rotation sequence, in combination with conventional tillage, had the highest profitability and ranked as the least risky scenario.  The second most profitable treatment was conventional tillage with four years of bahiagrass. Focusing on strip tillage, four years of bahiagrass with strip-tillage ranked third in term of profitability.</span></p>


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 795A-795
Author(s):  
Monica Ozores-Hampton*

The success of long-term vegetable production and maintenance of environmental quality is dependent on soil quality. Indicators of soil quality include cation exchange capacity (CEC), organic matter (OM), carbon (C), pH, and the number and community structure of soil organisms. The use of appropriate compost has been shown to improve soil quality and enhance the response to fertilizer, therefore improving growth and yield of vegetable crops. The objective of this study was to evaluate changes in the chemical and biological properties of soil in response to compost use in conventional vegetables production systems. A survey was conducted on 5 farms (three in Immokalee, and one each in Delray Beach, and Clewiston) growing tomato, pepper, and specialty vegetables. Most of the farms were applying composted yard trimming waste alone or in combination with biosolids or horse manure at application rates of between 7 to 112 Mg·ha-1 once a year. Soil samples were taken from composted and non-composted areas in each farm during Feb. and Mar. 2002. Soil pH, OM, C, K, Ca, Mg, Cu, Fe, MN and Zn were higher in the composted areas compared with the non-composted areas for each farm. CEC values in composted areas were double those in non-composted areas. Most importantly, application of compost enhanced the overall soil microbial activity as determined by total microorganism number, SRD (species richness diversity), and TSRD (total species richness diversity) of six functional groups including heterotrophic aerobic bacteria, anaerobic bacteria, fungi, actinomycetes, pseudomonads, and nitrogen-fixing bacteria, in all the participating farms. The greatest soil quality improvement was seen in soils receiving the highest rates of compost for the longest time.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1757-1762 ◽  
Author(s):  
Anna L. Testen ◽  
Sally A. Miller

Anaerobic soil disinfestation (ASD) was evaluated as a tool for managing the root-knot nematode Meloidogyne hapla in lettuce (Lactuca sativa) and clubroot disease, caused by Plasmodiophora brassicae, in mustard greens (Brassica juncea) produced on Ohio muck soils in Huron and Stark Counties. In two consecutive years of field trials, wheat bran (20.2 Mg ha−1), molasses (10.1 Mg ha−1), and wheat bran (20.2 Mg ha−1) plus molasses (10.1 Mg ha−1) were assessed as ASD carbon sources and compared with nonamended controls. Data were collected from plants grown in the field and from plants grown in field-treated soils in growth chamber-based post-ASD bioassays. Anaerobic conditions developed in ASD-treated soils in both trial years, as indicated by polyvinyl chloride pipes painted with an iron oxide paint. Soil pH did not decrease during ASD at the Huron County site of the mustard greens clubroot trials in either trial year but soil pH decreased significantly during ASD in Stark County soils treated with ASD with either wheat bran or wheat bran plus molasses compared with control soils in both trial years. Impacts of ASD on plant biomass were inconsistent in direct field measurements; however, significantly higher biomasses were observed in lettuce and mustard greens grown in bioassay soils collected from plots treated with ASD with wheat bran-based amendments compared with plants grown in soils from control plots. Based on direct field measurements and bioassays, the use of ASD with any carbon source led to significant reductions in root-knot nematode galling on lettuce compared with controls. Reductions in clubroot severity in mustard greens following ASD were less consistent; however, significant reductions in clubroot severity were observed in the field in one trial year and in both years of bioassays. The results of these studies indicate that ASD is a promising tool for managing soilborne diseases in muck soil vegetable production systems.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 832C-832
Author(s):  
Richard Smith* ◽  
Krishna Subbarao ◽  
Steve Koike ◽  
Steve Fennimore ◽  
Adelia Barber

Growers in the Salinas Valley are not able to rotate away from lettuce to other crops such as broccoli, as often as would be desirable due to economic pressures such as high land rents and lower economic returns for rotational crops. This aggravates problems with key soilborne diseases such as Sclerotinia minor, Lettuce Drop. Mustard cover crops (Brassica juncea and Sinapis alba) are short-season alternative rotational crops that are being examined in the Salinas Valley for the potential that they have to reduce soilborne disease and weeds. Mustard cover crops have been have been shown to suppress various soilborne diseases and there are also indications that they can provide limited control of some weed species. However, no studies have shown the impact of mustard cover crops under field conditions on S. minor. In 2003 we conducted preliminary studies on the incidence of S. minor and weeds following mustard cover crops in comparison with a bare control or an area cover cropped to Merced Rye (Secale cereale). There was a slight, but significant reduction of S. minor infection in one of three trials following mustard cover crops. Mustard cover crops also reduced emergence of Shepherd's Purse (Capsella bursa-pastoris) and Common Purslane (Portulaca oleracea) these studies. Mustard cover crops have distinct nitrogen cycling characteristics. They were shown to reach a peak of release of nitrogen in 30 to 50 days following incorporation into the soil. The levels of nitrogen that are released by mustard cover crops were substantial and could be useful in nitrogen fertilizer programs for subsequent vegetable crops.


Sign in / Sign up

Export Citation Format

Share Document