scholarly journals Evaluation of Scotch Bonnet and Habanero Peppers (Capsicum chinense) For Resistance to Southern Root-knot Nematodes

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 621f-622
Author(s):  
R.L. Fery ◽  
J.A. Thies

Scotch Bonnet and Habanero peppers, extremely pungent cultivar classes of Capsicum chinense, are becoming popular in the United States. Since the southern root-knot nematode (Meloidogyne incognita) is a major pest of many C. annuum cultivars commonly grown in the United States, a series of greenhouse and field studies was conducted to determine whether Scotch Bonnet and Habanero peppers also are vulnerable to the pest. An effort was made to collect Scotch Bonnet and Habanero seeds from all available commercial and private sources. In an initial greenhouse test, a collection of 59 C. chinense accessions was evaluated for reaction to M. incognita (race 3). All accessions obtained from commercial sources were moderately susceptible or susceptible. However, four accessions obtained via Seed Savers Exchange listings exhibited high levels of resistance. Three of these accessions (identified by the seed sources as Yellow Scotch Bonnet, Jamaica Scotch Bonnet, and Red Habanero) were studied in subsequent greenhouse and field plantings, and each was confirmed to have a level of resistance similar to the level of resistance exhibited by the C. annuum cv. Mississippi Nemaheart. Each of the resistant lines has good fruit and yield characteristics. The two Scotch Bonnet accessions produce yellow, bonnet-shaped fruit. The Red Habanero accession does not produce the lantern-shaped fruit typical of Habanero cultivars; the fruit have a bonnet shape.

HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 923-926 ◽  
Author(s):  
Richard L. Fery ◽  
Judy A. Thies

Scotch Bonnet and Habanero peppers, extremely pungent cultivar classes of Capsicum chinense Jacq., are increasing in popularity in the United States. Because the southern root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is a major pest of many C. annuum cultivars, a series of greenhouse and field experiments was conducted to determine if Scotch Bonnet and Habanero peppers from available commercial and private sources also are vulnerable to the pest. In an initial greenhouse test, a collection of 59 C. chinense cultigens was evaluated for reaction to M. incognita race 3. All cultigens obtained from commercial sources were moderately susceptible or susceptible. However, four accessions obtained through Seed Savers Exchange listings exhibited high levels of resistance. Three of these cultigens (PA-353, PA-398, and PA-426) were studied in subsequent greenhouse and field plantings, and each was confirmed to have a level of resistance similar to that available in C. annuum. All three of the resistant cultigens are well-adapted and each is potentially useful in commercial production without further development. None of the Habanero cultigens was resistant to the southern root-knot nematode. The resistant Scotch Bonnet cultigens may serve as sources of resistance for development of root-knot nematode—resistant Habanero peppers.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 600C-600
Author(s):  
R.L. Fery ◽  
P.D. Dukes ◽  
J.A. Thies

The southern root-knot nematode (Meloidogyne incognita) is a major pest of bell peppers (Capsicum annuum) in the United States. Since none of the leading bell pepper cultivars grown in the U.S. exhibit adequate levels of resistance, a breeding program was initiated to incorporate the N root-knot nematode resistance gene into commercial bell pepper germplasm. A backcross breeding procedure was used. The donor parent of the N gene was the open-pollinated, pimiento pepper cultivar Mississippi Nemaheart, and the recurrent parents were the open-pollinated bell pepper cultivars Keystone Resistant Giant and Yolo Wonder. A large number of homozygous resistant BC6 populations were evaluated in field tests in 1995, and two lines (PA-440, an isoline of `Keystone Resistant Giant', and PA-453, an isoline of `Yolo Wonder') were selected for further field evaluation and seed multiplication in 1996. Results of replicated field and greenhouse tests conducted in 1996 indicate that root-knot nematode resistance has been incorporated successfully in `Keystone Resistant Giant' and `Yolo Wonder' backgrounds.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 766B-766 ◽  
Author(s):  
Richard L. Fery* ◽  
Judy A. Thies

Root-knot nematodes (Meloidogyne spp.) are major pests of pepper (Capsicum spp.) in the United States, and parasitism of susceptible plants can result in severe yield losses. Although cultivars belonging to the species C. annuum account for most of the peppers grown in the United States. Habanero-type cultivars belonging to the species C. chinense are becoming increasingly popular. Unfortunately, all commercial Habanero-type cultivars are susceptible to root-knot nematodes. In 1997, the USDA released three C. chinense germplasm lines that exhibit high levels of resistance to root-knot nematodes. The resistance in these lines is conditioned by a single dominant gene, and this gene conditions resistance to the southern root-knot nematode (M. incognita), the peanut root-knot nematode (M. arenaria race 1), and the tropical root-knot nematode (M. javanica). A recurrent backcross breeding procedure has been used to transfer the C. chinense root-knot nematode resistance gene in Habanero-type germplasm. Several root-knot nematode resistant, Habanero-type candidate cultivars have been developed. Each of these Habanero-type candidate cultivars has a compact plant habit and produces a high yield of orange-colored, lantern-shaped fruit.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1073D-1073
Author(s):  
Richard L. Fery ◽  
Judy A. Thies

The USDA–ARS has released a new Habanero-type pepper cultivar named TigerPaw-NR. The new cultivar is the product of a conventional recurrent backcross breeding procedure to transfer a dominant root-knot nematode resistance gene from the Scotch Bonnet accession PA-426 into the Habanero-type accession PA-350. TigerPaw-NR was derived from a single F3BC4 plant grown in 2002. TigerPaw-NR is homozygous for a dominant gene conditioning a high level of resistance to the southern root-knot nematode, the peanut root-knot nematode, and the tropical root-knot nematode. TigerPaw-NR has a compact plant habit and produces attractive lantern-shaped, orange-colored fruit. The results of three replicated field studies conducted at Charleston, S.C., indicate that the fruit and yield characteristics of TigerPaw-NR are comparable to those of currently available Habanero-type cultivars. A typical fruit weighs 7.8 g, is 2.7 cm wide × 4.4 cm long, and is extremely pungent (348,634 Scoville heat units). Root-knot nematodes are major pests of peppers in the United States, and all Habanero-type cultivars currently available to commercial growers and home gardeners are susceptible. The root-knot nematode resistant TigerPaw-NR is recommended for use by both commercial growers and home gardeners. Protection for TigerPaw-NR is being sought under the Plant Variety Protection Act.


1997 ◽  
Vol 122 (2) ◽  
pp. 200-204 ◽  
Author(s):  
J.A. Thies ◽  
J.D. Mueller ◽  
R.L. Fery

The southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] is a serious pest of pepper (Capsicum annuum L.). Currently, methyl bromide is used for nematode control, but the pending withdrawal of this fumigant from the United States market has resulted in a need for effective alternative root-knot nematode management measures. We evaluated the effectiveness of resistance of `Carolina Cayenne' relative to the susceptible genotypes `Early Calwonder' and PA-136 in greenhouse, microplot, and field studies. In all tests, `Carolina Cayenne' exhibited exceptionally high resistance (minimal galling, minimal nematode reproduction, and no yield reduction) to M. incognita; `Early Calwonder' and PA-136 were highly susceptible. In a test conducted in a heavily infested field, `Carolina Cayenne' outyielded PA-136 by 339%. The exceptionally high resistance exhibited by `Carolina Cayenne' provides an alternative to methyl bromide and other fumigant nematicides for managing root-knot nematodes in pepper.


2015 ◽  
Vol 16 (3) ◽  
pp. 132-133 ◽  
Author(s):  
M. R. Manuchehri ◽  
J. E. Woodward ◽  
T. A. Wheeler ◽  
P. A. Dotray ◽  
J. W. Keeling

The results indicate that S. tragus is a suitable host of M. incognita and, therefore, failure to properly manage S. tragus in rotation crops or during fallow periods may negate the benefit of crop rotation. Accepted for publication 1 September 2015. Published 10 September 2015


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 22 ◽  
Author(s):  
Eric Tielemans ◽  
Tomoko Otsuki ◽  
Tara Cheesman ◽  
Fiona Selmes ◽  
Anthony Pfefferkorn ◽  
...  

Esafoxolaner is a purified afoxolaner enantiomer with insecticidal and acaricidal properties. It is combined with eprinomectin and praziquantel, nematodicidal and cestodicidal compounds, in a novel topical endectoparasiticide formulation for cats. This novel formulation was tested in four field studies, in the United States, Europe, Japan and Australia. In all studies, naturally flea-infested domestic cats were treated with the novel formulation at the label dose and conditions of use. The main objective, identical in the four studies, was to assess efficacy on fleas, based on comparison of mean number of fleas found on infested cats before and one month after treatment. Tolerance to the product was also evaluated in the four studies. Otherwise, the studies had some differences in their design and secondary objectives, for example testing for a reduction in flea infestation-related cutaneous signs, testing of one treatment or of three monthly treatments, and use of a positive control group. In the four studies, a total of 307 cats were treated with the novel formulation. The reduction of fleas one month after treatment was 97.7%, 98.8%, 100% and 99.7% in the United States, Europe, Japan and Australia, respectively. There were no significant health abnormalities attributed to treatment in any of the studies.


Weed Science ◽  
1975 ◽  
Vol 23 (5) ◽  
pp. 433-436 ◽  
Author(s):  
Robert E. Eplee

Ethylene gas (C2H4) was found to stimulate the germination of witchweed [Striga asiatica(L.) O. Kuntze] seeds. Ethylene diffuses greater than 120 cm horizontally from point of injection and more than 90 cm below the soil surface. Rates of 0.42 kg/ha induced germination of witchweed seeds in sandy soil; but 1.1 kg/ha is required on a heavy clay soil. Witchweed seeds respond to ethylene after a period of preconditioning that is necessary to break dormancy. Under field conditions in the Carolinas, maximum response of seeds to ethylene occurs between late April and late July. Field studies indicate a 90% reduction in viable witchweed seeds occurs where a single treatment with ethylene has been applied. The use of ethylene appears now to be a major contributor toward the eventual eradication of witchweed from the United States.


Plant Disease ◽  
2022 ◽  
Author(s):  
Roy Davis ◽  
Thomas Isakeit ◽  
Thomas Chappell

Fusarium wilt of cotton, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV), occurs in regions of the United States where cotton (Gossypium spp.) is grown. Race 4 of this pathogen (FOV4) is especially aggressive and does not require the co-occurrence of the root knot nematode (Meloidogyne incognita) to infect cotton. Its sudden appearance in far-west Texas in 2016 after many years of being restricted to California is of great concern, as is the threat of its continued spread through the cotton-producing regions of the United States. The aim of this research was to analyze the spatial variability of FOV4 inoculum density in the location where FOV4 is locally emerging, using quantitative and droplet digital polymerase chain reaction (qPCR and ddPCR) methods. Soil samples collected from a field with known FOV4 incidence in Fabens, Texas were analyzed. Appreciable variation in inoculum density was found to occur at spatial scales smaller than the size of plots involved in cultivar trial research, and was spatially autocorrelated (Moran’s I, Z = 17.73, p < 0.0001). These findings indicate that for cultivar trials, accounting for the spatial distribution of inoculum either by directly quantifying it or through the use of densely-distributed “calibration checks” is important to the interpretation of results.


Author(s):  
Patricia J. Vittum

This chapter studies Coleopteran pests. The larvae of turfgrass-infesting species of the family Scarabaeidae constitute a large complex whose members (white grubs) are similar in general appearance, in habits, and in the turfgrass damage they cause. At least 10 species of scarabs, belonging to five subfamilies, are pests of turfgrass in the United States. The larvae of this family are known also as grubs, a term applied to the larvae of several Coleoptera (beetles) and Hymenoptera (ants, bees, and wasps) in general. Grubs of the Scarabaeidae are the most serious turfgrass pests in the northeastern United States, and are considered a major pest in the Midwest, Southeast, and parts of the southwestern United States. Their subterranean habits make them among the most difficult of turfgrass insects to manage.


Sign in / Sign up

Export Citation Format

Share Document