scholarly journals Seasonal Fluctuations of the Firmness and Cell Wall Polysaccharides of Citrus Fruit Rind

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 684f-685
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Tatsushi Ogata

To compare to two types of Citrus fruit rind [i.e., soft type (satsuma mandarin, Citrus unshiu Marc.) and firm type (Hassaku, C. Hassaku Hort. Tanaka)], rind firmness and contents of cell wall polysaccharides were measured from August to January. In August, firmness was measured by a puncture test and found to be ≈3000g in both species. Firmness of satsuma mandarin decreased drastically with time from August to September and decreased slightly thereafter. In contrast, Hassaku firmness increased slightly from August to September, decreased from September to November, and fluctuated. Hassaku firmness, therefore, was significantly higher than satsuma mandarin firmness after September. We measured sugar content in each fraction after fractionalizing cell wall polysaccharides. In flavedo tissue, sugar content in cellulose fraction was the highest, followed by hot-water and EDTA fraction; hemicellulose fraction was the lowest. Although both species were almost the same in sugar content in cellulose and EDTA fraction in August, satsuma mandarin was significantly higher than Hassaku in January. These data showed that changing of rind firmness in citrus was related to the sugar content of cellulose and EDTA fraction in flavedo tissue. In albedo tissue, sugar content in the cellulose fraction was the highest, followed by hemicellulose and hot-water fraction, and EDTA fraction was the lowest. However the extent of seasonal fluctuation in albedo tissue was smaller than that of flavedo tissue, not having any relation to the changing of the firmness.

HortScience ◽  
1999 ◽  
Vol 34 (1) ◽  
pp. 79-81 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Tatsushi Ogata ◽  
Kiyohide Kojima

Changes in rind firmness and cell wall polysaccharide composition were measured in fruit with a) a soft rind, (`Satsuma' mandarin, Citrus unshiu Marc., cv. Aoshima), and b) a firm rind (hassaku, C. hassaku Hort. ex Tanaka), from August to January of the following year. Rind firmness was similar in both species in August, but hassaku had significantly firmer rind than did mandarin from September to January. Both flavedo and albedo tissues were extracted, and the extracts were hydrolyzed and fractionated to yield four fractions: (hot water, EDTA, hemicellulose, and cellulose). In flavedo tissue, sugar concentration was highest in the cellulose fraction, and lowest in the hemicellulose fraction. The concentration in all fractions decreased as the fruit developed and matured. Although the sugar concentration in the cellulose and EDTA fractions of both species was similar in August, it was significantly higher in both fractions in hassaku than in mandarin in January. The sugar concentration of each fraction from albedo tissue was in the order: cellulose > hemicellulose > hot water > EDTA. The range of variation in cell wall sugars in albedo tissue was smaller than that in flavedo tissue. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 114-116 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Kiyohide Kojima ◽  
Tatsushi Ogata

Various species and cultivars of citrus were studied to determine the relationship between texture and cell wall polysaccharide content of fruit flesh. Among those tested cultivars, navel orange (Citrus sinensis Osbeck) and hassaku (C. hassaku Hort. ex Tanaka) were firmest, `Fukuhara orange' (C. sinensis Osbeck) was intermediate, and satsuma mandarin (C. unshiu Marc.) was softest. There was a 3-fold difference in firmness among the 12 citrus cultigens measured. Cohesiveness values ranged from 0.30 to 0.49 and were not correlated with fruit firmness. Sugar content in each cell wall fraction was highest in the water and EDTA fractions, followed by the hemicellulose fraction, and was lowest in the cellulose fraction. Correlation coefficients between firmness and sugar content ranged from 0.69 to 0.88 and were highest in the cellulose fraction. This study suggests that firmness of fruit flesh among the cultigens is influenced by cell wall polysaccharide composition. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 936
Author(s):  
Shengyi Zhou ◽  
Atikur Rahman ◽  
Junhui Li ◽  
Chaoyang Wei ◽  
Jianle Chen ◽  
...  

Polysaccharides are considered to be the most important active substances in Goji. However, the structure of polysaccharides varies according to the extraction methods applied, and the solution used to prepare Goji polysaccharides (LBPs) were limited. Thus, it is important to clarify the connection between extraction methods and structure of Goji polysaccharide. In view of the complex composition of cell wall polysaccharides and the various forms of interaction, different extraction methods will release different parts of the cell wall. The present study compared the effects of different extraction methods, which have been used to prepare different types of plant cell wall polysaccharides based on various sources, on the structure of cell-wall polysaccharides from Goji, by the single separate use of hot water, hydrochloric acid (0.4%) and sodium hydroxide (0.6%), at both high and low temperatures. Meanwhile, in order to explore the limitations of single extraction, sequential extraction methods were applied. Structural analysis including monosaccharide analysis, GPC-MALLS, AFM and 1H-NMR suggested the persistence of more extensively branched rhamnogalacturonan I (RG-I) domains in the procedures involving low-temperature-alkali, while procedures prepared by high-temperature-acid contains more homogalacturonan (HG) regions and results in the removal of a substantial part of the side chain, specifically the arabinan. A kind of acidic heteropolysaccharide was obtained by hot water extraction. SEC-MALLS and AFM confirmed large-size polymers with branched morphologies in alkali-extracted polysaccharides. Our results provide new insight into the extraction of Goji polysaccharides, which differ from the hot water extraction used by traditional Chinese medicine.


2010 ◽  
pp. 1419-1424
Author(s):  
A. Dore ◽  
M.G. Molinu ◽  
T. Venditti ◽  
G. D'hallewin ◽  
N. Culeddu ◽  
...  

2021 ◽  
Author(s):  
Olufunke D. Akin-Ajani ◽  
Adenike Okunlola

Pectin, a natural ionic polysaccharide found in the cell wall of terrestrial plants undergoes chain–chain association to form hydrogels upon addition of divalent cations. Based on its degree of esterification, pectin has been classified into two main types. The high methoxyl pectin with a degree of esterification greater than 50%, which is mainly used for its thickening and gelling properties and the low methoxyl pectin, which is widely used for its low sugar-content in jams, both applications being in the food industry. Pectin is mostly derived from citrus fruit peels, but can also be found in other plants such as waterleaf leaves, cocoa husk, and potato pulps. Pectin has been used as an excipient in pharmaceutical formulations for various functions. This chapter will focus on the various applications to which pectin has been used in the pharmaceutical industry.


Author(s):  
W. S. Ryan Jr.

AbstractA method for the determination of the neutral sugar content of tobacco cell wall fractions has been developed. The seven neutral sugars - rhamnose, fucose, arabinose, xylose, mannose, glucose and galactose - determined in the analysis represent the usual glycosyl residues found in plant cell wall polysaccharides. In this procedure, the structural polysaccharides are acid hydrolysed into their constituent monosaccharides. The monosaccharides are then reduced with sodium borohydride to the corresponding alditols. The alditols are converted to the acetates with acetic anhydride. The alditol acetates are quantitatively measured by capillary gas chromatography with flame ionization detection. Both 72 % H


Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

Sign in / Sign up

Export Citation Format

Share Document