Effect of Root-zone Temperature on Strawberry Growth and Development

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 460b-460
Author(s):  
Melita Marion Biela ◽  
Gail R. Nonnecke ◽  
William R. Graves ◽  
Harry T. Horner

Root-zone temperature (RZT) effects were studied to determine physiological changes on whole-plant and microscopic levels of strawberry (Fragaria ×ananassa) growth and development. A greenhouse experiment was conducted in 1997 with `Tristar' day-neutral strawberry using a randomized complete-block design with three RZT treatments (23, 29, and 35 °C) and four replications. The total number of flowers was less in plants subjected to 35 °C. Total weight of fruit yield was highest at 29 °C and least at 23 °C, due possibly to later fruit development. Fresh weight was highest in plants grown at 23 and 29 °C. Dry weight analysis showed that root and leaf growth were inhibited at 35 °C. Throughout the duration of the experiment, transpiration rates were lower in plants subjected to 35 °C. In general, plants grown under RZT of 29 °C had more optimal vegetative and reproductive growth than those grown under 23 and 35 °C.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 499B-499
Author(s):  
Melita Marion Biela ◽  
Gail R. Nonnecke ◽  
William R. Graves ◽  
Harry T. Horner

High temperatures are reported to promote day-neutral strawberry (Fragaria ×ananassa) vegetative growth and development and inhibit floral and fruit development, thereby imposing geographic and temporal limitations on fruit production. Day-neutral strawberry response to air temperature has been researched, but specific responses to temperature in the root zone have not. In a 1998 greenhouse experiment, 60 `Tristar' plants were grown hydroponically in a system of individual, temperature-controlled pots. A randomized complete-block design with constant root-zone treatments of 11, 17, 23, 29, and 35 °C and 12 replications were used. Stomatal conductance and transpiration rate were significantly lower for plants at 35 °C, compared with plants at all other temperatures. Leaf area and leaf dry mass of plants at 35 °C were five and four times smaller, respectively, than the combined mean for plants in all other treatments. Leaf area of runner tips was 450 and 44.5 cm2 at 11 and 35 °C, respectively, compared with that of plants at all other temperatures, 1552.1 cm2. Fruit dry mass was 14.5, 21.6, 25.5, 29.0, and 3.96 g per plant at 11, 17, 23, 29, and 35 °C, respectively. Root dry mass was highest at 11 and 17 °C and lowest for plants at 35 °C. The number of flowers, fruit, and inflorescences per plant was reduced at 35 °C, as were individual berry fresh mass and diameter. Overall, `Tristar' growth and development were near optimal at 17, 23, and 29 °C.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 870A-870
Author(s):  
Desmond R. Layne ◽  
Michael G. Kwantes

A two-factor factorial, randomized block design was used to study the influence of root-zone temperature (RZT) and fertilization regime (Fert) on early growth and development of pawpaw seedlings in the greenhouse. Stratified seeds were sown in 45-inch3 Rootrainer cells in Promix BX potting medium. Plants were watered/fertilized twice weekly to runoff. RZT was at two levels—ambient (75F–Amb) or bottom-heated (90F–Heat), and it commenced at sowing date. Fert was at four levels—125, 250, 500, or 1000 ppm Peter's 20N–20P–20K plus soluble trace elements, and it commenced at emergence date. Bench position in the greenhouse was used as the blocking variable (three blocks). The 20 most uniform seedlings were selected from each treatment/block for weekly growth measurements. At the termination of the experiment (equivalent to time for transplanting to a larger container), 10 plants per treatment/block were harvested destructively. RZT significantly influenced time to seedling emergence where Heat seedlings emerged 10 days earlier than Amb seedlings. Heat plants were significantly taller, had greater trunk diameter, leaf number, and leaf area than Amb plants. Fert at 125 to 250 ppm resulted in the most robust seedlings, with 1000 ppm Fert often inducing early terminal bud set. Impact of RZT and Fert on seedling development over time will be discussed.


1987 ◽  
Vol 67 (2) ◽  
pp. 409-415 ◽  
Author(s):  
A. MENKIR ◽  
E. N. LARTER

Based on the results of an earlier paper, 12 inbred lines of corn (Zea mays L.) were evaluated for emergence and seedling growth at three controlled root-zone temperatures (10, 14, and 18 °C). Low root-zone temperatures, 10 and 14 °C, were detrimental to emergence, seedling growth, and root growth of all inbred lines. Differential responses of inbred lines were observed within each temperature regime. The differences in seedling emergence among lines became smaller with increasing root-zone temperature, while the reverse was true for seedling dry weight. Simple correlation coefficients showed a significantly (P = 0.05) negative association between emergence percentage and emergence index (rate). Neither of these two emergence traits was significantly correlated with seedling dry weights. Seedling dry weights were significantly (P = 0.01) and positively associated with root dry weights. Two inbred lines exhibited good tolerance to low root-zone temperatures, viz. CO255 and RB214. A significant and positive correlation existed between emergence percentage at a root-zone temperature of 10 °C and field emergence in test with the same genotypes reported earlier. Selection at a root-zone temperature of 10 °C for a high percentage of seedling emergence, therefore, could be effective in identifying genotypes capable of germinating in cool soils. Furthermore, the significantly (P = 0.01) positive relationship between seedling dry weights at all root-zone temperatures and those from the field test suggest that strains with vigorous seedling growth in the field could be identified using low root-zone temperature regimes.Key words: Zea mays, root-zone temperature, cold tolerance


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 933
Author(s):  
Muhammad Ameen ◽  
Zhuo Zhang ◽  
Xiaochan Wang ◽  
Muhammad Yaseen ◽  
Muhammad Umair ◽  
...  

The winter season in Nanjing is from December to February, with extremely low temperature and high humidity due to seasonal snowfall. During these extreme cold climatic conditions, plants have to survive severe heat stress conditions, even if they are being kept in greenhouses. The objective of this study was to investigate a heating system that can provide heat directly to the root zone instead of heating the entire greenhouse, which is a viable option to reduce energy consumption. Root zone heating could be an effective alternative for the sustainable development of plants during the winter. A novel type of root zone heating system was applied to evaluate the energy consumption during different greenhouse ambient temperature conditions, the effects of root zone heating systems on pepper plant morphology, and heat transfer rates to plant canopy in the greenhouse. The temperature treatments in root zone heating system were T-15, T-20, T-25, T-30, and a control treatment (TC) at 15 °C, 20 °C, 25 °C, and 30 °C, respectively, while TC received no heat. A simulation study was carried out to validate the root zone temperature. The results of the current investigation revealed that energy consumption has an inverse relationship to the ambient temperature of the greenhouse, while temperature gradients to the plant canopy observed from the lower to the upper part of the plant and the upper canopy experienced less temperature fluctuation as compared to the lower part of the plant. The results also showed that treatment T-20 had the maximum in terms of the leaf dry weight, stem diameter, and the number of leaves, while T-25 showed the maximum root dry weight and stem dry weight; T-30 and T-15 had minimum dry weights of plant segments among all treatments. Control treatment (TC) showed a minimum dry mass of plant. The root zone heating with optimal root zone temperature was found to be a viable and adaptable option as this leads to improved energy consumption patterns for the sustainable growth and development of plants in greenhouses during extremely low temperatures.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1160b-1160
Author(s):  
Khin San Wai ◽  
S.E. Newman

The response of Antirrhinum majus (snapdragon) cultivars (`Tampicoi' and `Rainier White') to night air temperatures (10C and 20C) and elevated root-zone temperature (26C and ambient) was studied. Height of plants grown with a heated root-zone were greater, compared to unheated at both night temperatures for both cultivars. Shoot dry weight of `Tampico' plants was reduced by heated root-zone temperature at 20C night air temperature. Raceme length was greater with heated root-zone temperature compared to unheated at 10C night air temperature. Days to flower were shorter with heated compared to unheated root-zone at both night air temperatures for both cultivars. Stomatal diffusive resistance was greater on plants with unheated compared to heated root-zone temperature at 10C night air temperature for `Rainier White'.


HortScience ◽  
1991 ◽  
Vol 26 (7) ◽  
pp. 870-872 ◽  
Author(s):  
M. Tagliavini ◽  
N.E. Looney

Root and shoot growth of peach seedlings was strongly suppressed when the roots were held at 8 to 10C. Shoot and root dry weights and root volume increased linearly with increasing root-zone temperature (RZT) to 22C. GA3 at 5.7 μm (2 ppm) added to the aerated full nutrient solution reversed the effect of low RZT on shoot elongation but inhibited root growth at all RZTs. Paclobutrazol (PBZ) (6.8 × 10-3μm) (2 ppb) inhibited shoot elongation at all RZTs and shoot dry weight at 16 and 22C. However, PBZ had no effect on root dry weight accumulation at any RZT. The shoot growth-promoting effect of GA3, relative to control plants, disappeared at higher RZTs, but GA3 reversed the growth-inhibiting effect of PBZ at all RZTs. PBZ increased mean root diameter at all RZTs and significantly increased root volume at 22C. These results show that growth of peach seedlings is profoundly influenced by a cool root-zone environment. The plant growth regulator effects suggest that seedling roots play an important role in whole-plant gibberellin physiology. Some possible implications for fruit production are discussed. Chemical names used: gibberellic acid (GA3); β -[(4-chlorophenyl)methyl]- α -(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol(paclobutrazol,PBZ).


1968 ◽  
Vol 21 (5) ◽  
pp. 855 ◽  
Author(s):  
Rae V Hannam

The growth of the vegetative shoot of tobacco, Nicotiana tabacum L., and the associated changes in dry weight of the whole plant and its major parts are described. By means of serial reconstruction, the volume changes of successive young leaf primordia are followed, and this information is integrated with the dry weight data for older leaves.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 586b-586
Author(s):  
Helen Thompson ◽  
Robert Langhans

This research explored cool crop production in various climate zones using CEA facilities and hydroponics ponds to control growth rate and quality through root zone temperature control. The precise controls were used to vary air and water temperatures to study the temperature gradient between root and shoot zones. Effect of this gradient was measured by growth rates and final harvest dry weights. Lactuca sativa L. cv. Ostinata seedlings were germinated and grown 11 days in a growth chamber and moved to greenhouse ponds. Air temperatures chosen were 17, 24, and 31°C. These were constant for the 24 days that lettuce grew in the ponds with a 5°C decrease for 14 hours. during the night. Water temperatures of the three ponds in the greenhouse were set and maintained at 17, 24, and 31°C. Maximum final harvest weights were obtained at 24°C air/water 24°C. Final weights for the 17 and 31°C water setpoint were comparable at 24°C air. The 31 °C air /water inhibited quality and final dry weight, while 17 and 24°C water produced equivalent dry weights at 31°C air. At 31°C air heads were tighter at 17 than at 24°C, and loose at 31°C. At air 17 °C maximum weight was at 24°C water and minimum at 31°C water. At 17°C air, the 24°C water plants were of good quality, with thicker leaves but visibly smaller than the 31°C water crop. Significant differences in harvest dry weights were shown at each 7-day harvest beginning on day 14, due to both air and water setpoint factors and there was significant interaction between them.


2007 ◽  
Vol 25 (2) ◽  
pp. 73-77
Author(s):  
Amy N. Wright ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Abstract Root-zone temperature (RZT) is an important environmental factor affecting growth and performance of woody ornamental plants in the landscape. Research was conducted to compare the effects of RZT on survival, growth, and root morphology of a difficult-to-transplant species, mountain laurel (Kalmia latifolia L.), and an easy to transplant species, Japanese holly (Ilex crenata Thunb.). Seedlings of mountain laurel or micropropagated liners of mountain laurel (Kalmia latifolia L. ‘Sarah’) and rooted stem cuttings of Japanese holly (Ilex crenata Thunb. ‘Compacta’) were grown hydroponically for 12 weeks in controlled environment conditions under long days at 9-hr days/15-hr nights of 26/22C (79/72F) with RZTs of 16, 24, or 32C (61, 75, or 90F). Compared to 16 and 24C (61 and 75F), percent survival of mountain laurel was reduced by a RZT of 32C (90F), whereas percent survival of Compacta holly was unaffected by RZT. Root dry weight of mountain laurel was reduced 72% at 32C (90F) while top dry weight was unaffected by RZT. Top and root dry weights of Compacta holly were unaffected by RZT. Root: top ratio of mountain laurel was reduced by increasing RZT, whereas root: top ratio of Compacta holly was unaffected by RZT. Root area of mountain laurel and Compacta holly were reduced 80 and 64%, respectively, at 32C (90F) compared with 16C (61F). Number of lateral roots in the apical 2 cm (0.8 in) of primary roots of both taxa increased with increasing RZT. Results of this research indicate that reducing RZT in the landscape may increase survival and root growth of transplanted mountain laurel.


Sign in / Sign up

Export Citation Format

Share Document