scholarly journals 022 Manipulation of the Greenhouse Microclimate to Improve the Efficacy of Entomopathogens for Control of Greenhouse Pests

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 391E-392
Author(s):  
J.L. Shipp ◽  
Yun Zhang

Application of entomopathogenic fungi by inundative releases has been attempted for control of a wide range of insect pests, with generally poor results. This is largely because entomopathogens are often treated as direct substitutes for chemical insecticides and applied without an adequate knowledge of their interactions with the local environment. Humidity of greater than 90% RH has long been regarded as the a critical condition for germination and infection by the spores. With both temperature and humidity controlled, greenhouse crops offer an excellent potential for pest control using entomopathogens. The long-term maintenance of >90% RH, however, is not standard practice in greenhouse production. This study explored the possibility of improving the efficacy of the fungi by temporarily changing greenhouse humidity without adversely affecting crop growth. The study included laboratory and greenhouse trials. In laboratory trials, four humidity levels of 75%, 80%, 89%, and 97.5% RH were evaluated over a 48-h period. Three commercial products of Beauveria bassiana were evaluated (Naturalis-O, Botanigard 22 WP, and Botanigard ES). Greenhouse pests of green peach aphid, melon aphid, western flower thrips, whitefly, and two-spotted spider mite were used as target insects. The infection rate of B. bassiana was found to increase when the sprayed adult insects were exposed to higher humidity levels with the maximum infection obtained at 97.5% RH. Percent infection and difference between humidity levels, however, were formulation- and host-dependent. The highest overall control efficacy was obtained by using Botanigard ES. Botanigard ES was highly effective to adult green peach aphid, melon aphid, and greenhouse whitefly at high humidities. Effects of B. bassiana against biological control agents for greenhouse vegetable crops were also evaluated. Greenhouse trials were conducted in two adjacent greenhouse compartment with high and low humidity conditions for 48 h, respectively, for selected pest insects to valid laboratory results.

2017 ◽  
Vol 10 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Surendra K. Dara

Aims:Lettuce and broccoli are high value vegetable crops in California. The western flower thrips,Frankliniella occidentalison lettuce, and the cabbage aphid,Brevicoryne brassicaeand the green peach aphid,Myzus persicaeon broccoli are important insect pests that are frequently managed with chemical insecticides.Observation:Efficacy of various chemical insecticides and the entomopathogenic fungusBeauveria bassianawas evaluated against these pests in field studies in the Santa Maria area of California. Some insecticides varied in their efficacy againstF. occidentalisfrom year to year and against different aphid species.Conclusion:A new insecticide sulfoxaflor provided good control of aphids on broccoli.Beauveria bassianademonstrated a potential for broccoli and lettuce integrated pest management.


2021 ◽  
Vol 13 (9) ◽  
pp. 148
Author(s):  
Hira Mannan ◽  
Qurban Ali Nahiyoon ◽  
Jilian Li

Okra (Abelmoschus esculentus L.) is an essential vegetable crop with good nutritional significance. Insect pests are the major threat for poor production of the okra crop. Thrips of vegetable crops are known to be serious pests on a wide range of fruit, vegetable, flower, and agronomic crops. The present field study was carried out to know the efficacy of different insecticides (acetamiprid 19% weightable water (ww), lambda 25% ww, colarphipare 32% ww, lambda 2.5% ww and abamectin 1.3% ww) against Thrips, Thrips tabaci (Lindeman) on okra crop during the year 2019, and observations against T. tabaci (Lindeman) were recorded after 24 hrs, 48 hrs, 72 hrs and 07 days of each spray in all the treatments. The pre-treatment count of thrips on okra was non-significant (P > 0.05); while the evaluated efficacy of different insecticides against thrips was significant (P < 0.01). It was noted that all the insecticides showed their highest efficacy after 7 days of spray and acetamiprid 19% weightable water (ww) was more efficient to combat the T. tabaci as compared to other pesticides that produced field efficacy of 73.92 and 74.91% against thrips after 7 days of 1st and 2nd spray respectively. Abamectin, 1.3% ww, was reasonably successful, yielding 53.81 and 56.66% field efficacy against T. tabaci (Lindeman) after 7 days of first and second spray. Also, moderately effective was colarphipare 32% ww, which developed field effectiveness of 56.41 and 61.49% against T. tabaci (Lindeman) after 7 days of first and second spray, respectively.


Author(s):  
Surendra K. Dara ◽  
David Peck ◽  
Dave Murray

The twospotted spider mite, Tetranychus urticae and the western tarnished plant bug, Lygus hesperus are major arthropod pests of strawberries in California.  Other important insect pests include the greenhouse whitefly, Trialeurodes vaporariorum and the western flower thrips, Frankliella occidentalis.  Chemical pesticides play a major role in managing these pests, but not without the associated risk of pesticide resistance and environmental safety.  Two field studies were conducted in Santa Maria to evaluate the potential of botanical and microbial pesticides in the integrated pest management (IPM) of strawberry.  Chemical, botanical, and microbial pesticides were evaluated against T. urticae in a small plot study in 2013 and against L. hesperus and other insect pests in a large plot study in 2015 in commercial strawberry fields.  Bug vacuums were also used in the 2015 study.  Results demonstrated that non-chemical alternatives can play an important role in strawberry IPM.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0239958
Author(s):  
Mika Murata ◽  
Kotaro Konno ◽  
Naoya Wasano ◽  
Atsushi Mochizuki ◽  
Ichiro Mitsuhara

Insect pests cause serious damage in crop production, and various attempts have been made to produce insect-resistant crops, including the expression of genes for proteins with anti-herbivory activity, such as Bt (Bacillus thuringiensis) toxins. However, the number of available genes with sufficient anti-herbivory activity is limited. MLX56 is an anti-herbivory protein isolated from the latex of mulberry plants, and has been shown to have strong growth-suppressing activity against the larvae of a variety of lepidopteran species. As a model of herbivore-resistant plants, we produced transgenic tomato lines expressing the gene for MLX56. The transgenic tomato lines showed strong anti-herbivory activities against the larvae of the common cutworm, Spodoptera litura. Surprisingly, the transgenic tomato lines also exhibited strong activity against the attack of western flower thrips, Frankliniera occidentalis. Further, growth of the hadda beetle, Henosepilachna vigintioctopunctata, fed on leaves of transgenic tomato was significantly retarded. The levels of damage caused by both western flower thrips and hadda beetles were negligible in the high-MLX56-expressing tomato line. These results indicate that introduction of the gene for MLX56 into crops can enhance crop resistance against a wide range of pest insects, and that MLX56 can be utilized in developing genetically modified (GM) pest-resistant crops.


Himachal Pradesh has various agro-climatic conditions suitable for producing a wide range of vegetable crops around the year. Sixty vegetable growers were selected from the Hamirpur district of Himachal Pradesh using a three-stage random sampling method. In the past 30 years, there was a massive reduction in cereals, pulses and oilseeds; it would be due to the introduction of vegetable crops. On average, the total area put under vegetable crops was 0.2974 and 0.3158 hectares during the summer and winter seasons, respectively, on the overall farm situation. The incidence of insect pests & diseases was the significant constraint related to production. Getting a loan from the bank was time-consuming, and lack of extension facilities were the most critical financial and institutional constraints, respectively. Training should be provided to the farmers to be aware of the latest technologies of KVKs and SAUs to overcome production constraints. For financial and institutional constraints, training camps should be held to provide knowledge about new schemes of state and centre government.


2009 ◽  
Vol 19 (3) ◽  
pp. 638-646 ◽  
Author(s):  
Raymond A. Cloyd

Pesticide mixtures are commonly used by greenhouse producers to deal with the array of arthropod (insect and mite) pests encountered in greenhouses. Greenhouse producers tank mix pesticides due to convenience because it is less time consuming, costly, and labor intensive to mix together two or more pesticides into a single spray solution and then perform one spray application compared with making multiple applications. Pesticide mixtures may also result in improved arthropod pest control. However, there has been no quantitative assessment to determine what pesticide mixtures (two-, three-, and four-way combinations) are being adopted by greenhouse producers and why. As such, a survey was conducted by distributing evaluation forms in conjunction with three sessions at two greenhouse producer conferences (two in 2007 and one in 2008) to obtain data on the types of pesticide mixtures used by greenhouse producers and determine if there are any problems associated with these pesticide mixtures. The evaluation form requested that participants provide information on the four most common pesticide mixtures (insecticides and/or miticides) used and for what specific arthropod pests. The response rate of the evaluation forms was 22.5% (45/200). The two-way pesticide mixture that was cited most often (n = 8) was the abamectin (Avid) and bifenthrin (Talstar) combination. The two pesticides typically included in a majority of the two-way and three-way mixtures were spinosad (Conserve) and abamectin. Spinosad was a component of 17 two-way and 7 three-way combinations, while abamectin was cited in 15 two-way and 9 three-way combinations. Both products are labeled for control of the western flower thrips (Frankliniella occidentalis), which is one of the most important insect pests in greenhouses. One pesticide mixture that was difficult to interpret involved the fungicides, thiophanate-methyl (Cleary's 3336) and metalaxyl (Subdue). This mixture was cited twice, and the arthropod pest listed was thrips (Thysanoptera). However, both fungicides have no insecticidal activity. Two of the mixtures listed in the survey used pesticides with similar modes of action: acephate (Orthene) + methiocarb (Mesurol), and pyrethrins (Pyreth-It) + bifenthrin (Talstar). A number of the pesticide mixtures listed for spider mites (Tetranychidae) were questionable due to similar life stage activity of the a.i. as indicated on the label including fenpyroximate (Akari) + clofentezine (Ovation), abamectin + chlorfenapyr (Pylon), and bifenazate (Floramite) + etoxazole (TetraSan). In fact, 38% of pesticide mixtures cited for twospotted spider mite (Tetranychus urticae) control should have been avoided due to analogous life stage activity. The data obtained from the survey clearly demonstrates that greenhouse producers implement a wide-range of pesticide mixtures to deal with the multitude of arthropod pests in greenhouses. However, the basis by which greenhouse producers decide the types of pesticides to mix together is not known. As such, the survey data can be used to direct future multistate or multiregional extension (outreach) efforts in developing programs specifically designed to educate greenhouse producers on which pesticides should and should not be mixed together.


2020 ◽  
Author(s):  
Mika Murata ◽  
Kotaro Konno ◽  
Naoya Wasano ◽  
Atsushi Mochizuki ◽  
Ichiro Mitsuhara

AbstractInsect pests cause serious damage in crop production, and various attempts have been made to produce insect-resistance crops, including the expression of genes for proteins with anti-herbivory activity, such as BT toxins. However, the number of available genes with sufficient anti-herbivory activity is limited. MLX56 is an anti-herbivory protein isolated from the latex of mulberry plants, and has been shown to have a strong growth-suppressing activity against the larvae of a variety of lepidopteran species. As a model of herbivore-resistant plants, we produced transgenic tomato lines expressing the gene for MLX56. The transgenic tomato lines showed strong anti-herbivory activities against the larvae of the common cutworm, Spodoptera litura. Surprisingly, the transgenic tomato lines also exhibited strong activity against the attack of the western flower thrips, Frankliniera occidentalis. Further, growth of the hadda beetle, Henosepilachna vigintioctopunctata fed on leaves of transgenic tomato was significantly retarded. The levels of damage caused by both western flower thrips and hadda beetles were negligible in the high-MLX56-expressing tomato line. These results indicate that introduction of the gene for MLX56 into crops can enhance crop resistance against a wide range of pest insects, and that MLX56 can be utilized in developing pest-resistance GM crops.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 871D-872
Author(s):  
Chang-chi Chu* ◽  
Kai Umeda ◽  
Tian-Ye Chen ◽  
Alvin M. Simmons ◽  
Thomas H. Henneberry

Insect traps are vital component of many entomological programs for detection and monitoring of insect populations. We equipped yellow (YC), blue (BC) sticky card (BC) with 530 nm lime green (LED-YC) and 470 nm blue (LED-BC) light-emitting diodes, respectively that increased trap catches of several insect pests. The LED-YC traps caught 1.3, 1.4, 1.8, and 4.8 times more adult greenhouse whitefly Trialeurodes vaporariorum (Westwood), sweetpotato whitefly Bemisia tabaci (Gennadius) biotype B, cotton aphids Gossypium hirsutum (L.), and fungus gnats Bradysia coprophila (Lintner), respectively, compared with standard YC traps. The LED-YC traps did not catch more Eretmocerus spp. than the standard YC traps. Eretmocerus spp. are important B. tabaci parasitoids used in greenhouse biological control programs. For whitefly control in greenhouse the 530 nm lime green LED equipped plastic cup trap designed by Chu et al. (2003) is the better choice than LED-YC trap because it catches few Eretmocerus spp. and Encarsia spp. whitefly parasitoids released for B. tabaci nymph control. The LED-BC traps caught 2.0-2.5 times more adult western flower thrips Franklinella occidentalis (Pergande) compared with the standard BC traps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valeria Fattoruso ◽  
Gianfranco Anfora ◽  
Valerio Mazzoni

AbstractThe greenhouse whitefly (GW), Trialeurodes vaporariorum is considered one of the most harmful insect pests in greenhouses worldwide. The GW mating behavior has been partially investigated and its vibrational communication is only in part known. A deeper knowledge of its intraspecific communication is required to evaluate the applicability of control methods based on techniques of behavioral manipulation. In this study, for the first time, we provided a detailed ethogram of the GW mating behavior and we characterized the vibrational signals emitted during the process of pair formation. We characterized two types of male vibrational emissions (“chirp” and “pulses”), differently arranged according to the behavioral stage to form stage-specific signals, and a previously undescribed Male Rivalry Signal. We recorded and characterized two new female signals: The Female Responding Signal and the Female Rejective Signal. The mating behavior of GW can be divided into six different stages that we named “call”, “alternated duet”, “courtship”, “overlapped duet”, “mating”, “failed mating attempt”. The analysis performed with the Markovian behavioral transition matrix showed that the “courtship” is the key stage in which male exhibits its quality and can lead to the “overlapped duet” stage. The latter is strictly associated to the female acceptance and therefore it plays a crucial role to achieve mating success. Based on our findings, we consider the use of vibrational playbacks interfering with GW mating communication a promising option for pest control in greenhouses. We discuss the possibility to start a research program of behavioral manipulation to control the populations of GW.


Sign in / Sign up

Export Citation Format

Share Document