scholarly journals Mist, Vapor Pressure Deficit, and Cutting Water Potential Influence Rooting of Stem Cuttings of Loblolly Pine

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 890D-890
Author(s):  
Anthony V. LeBude* ◽  
Barry Goldfarb ◽  
Frank A. Blazich

Producing high quality rooted stem cuttings on a large scale requires precise management of the rooting environment. This study was conducted to investigate the effect of the rooting environment on adventitious root formation of stem cuttings of loblolly pine (Pinus taeda L.). Hardwood stem cuttings of loblolly pine were collected in Feb. 2002 from hedged stock plants and stored at 4 °C until setting in Apr. 2002. One hundred stem cuttings per plot in each of two replications received 45, 61, 73, 102, 147, or 310 mL·m-2 of mist delivered intermittently by a traveling gantry (boom) system. Mist frequency was similar for all treatments and was related inversely to relative humidity (RH) within the polyethylene covered greenhouse. Rooting tubs in each plot were filled with a substrate of fine silica sand, and substrate water potential was held constant using soil tensiometers that activated a subirrigation system. Cutting water potential was measured destructively on two cuttings per plot beginning at 0500 hr every 3 hh until 2300 hr (seven measurements) 7, 14, 21, or 28 days after setting. During rooting, leaf temperature and RH were recorded in each plot to calculate vapor pressure deficit (VPD). Cutting water potential and VPD were strongly related to mist application. Cutting water potential was also related to VPD. Rooting percentage had a linear and quadratic relationship with mean cutting water potential and VPD averaged between 1000 and 1800 HR. Eighty percent rooting occurred within a range of values for VPD. Data suggest that VPD can be used to manage the water deficit of stem cuttings of loblolly pine to increase rooting percentage. These results may be applicable to other species and to other rooting environments.

HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1448-1456 ◽  
Author(s):  
Anthony V. LeBude ◽  
Barry Goldfarb ◽  
Frank A. Blazich ◽  
John Frampton ◽  
Farrell C. Wise

Two experiments were conducted during which juvenile hardwood or softwood stem cuttings of loblolly pine (Pinus taeda L.) were rooted under six mist regimes in a polyethylene-covered greenhouse to investigate the effect of mist level on vapor pressure deficit (VPD) and cutting water potential (Ψcut), and to determine the relationships between these variables and rooting percentage. In addition, net photosynthesis at ambient conditions (Aambient) and stomatal conductance (gs) were measured in stem cuttings during adventitious root formation to determine their relationship to rooting percentage. Hardwood stem cuttings rooted ≥80% when mean daily VPD between 1000 and 1800 hr ranged from 0.60 to 0.85 kPa. Although rooting percentage was related to Ψcut, and Aambient was related to Ψcut, rooting percentage of softwood stem cuttings was not related to Aambient of stem cuttings. Using VPD as a control mechanism for mist application during adventitious rooting of stem cuttings of loblolly pine might increase rooting percentages across a variety of rooting environments.


2020 ◽  
Author(s):  
Changming Li ◽  
Hanbo Yang

<p>The framework of isohydry or anisohydry, which is usually defined as the sensitivity of leaf water potential (Ψ<sub>L</sub>) to soil water potential (Ψs), has been rapidly adopted to solve a range of eco-hydrologic problems. While its reliability to describe the impacts of land-atmosphere interaction and seasonal phenology on plants has been recently questioned. In this study, we propose an expansion of the modern isohydricity framework to coordinate the dynamics of Ψ<sub>L</sub> derived from vapor pressure deficit (VPD) and leaf area index (A<sub>L</sub>), respectively. The contributions of VPD and A<sub>L </sub>to the sensitivity of Ψ<sub>L</sub> to Ψs are calculated and further evaluated using the FLUXNET dataset, as to validate the applicability of the extended concept. Then, we suggested a new method to calculate transpiration based on the new framework to establish relationship between Ψ<sub>L</sub> and Ψs at ecosystem scale. Our results illustrate that the new framework is reasonable for describing the dynamics of Ψ<sub>L</sub> and provides a promising potential for transpiration estimation.</p>


1973 ◽  
Vol 3 (4) ◽  
pp. 556-564 ◽  
Author(s):  
John E. Barker

Diurnal patterns of water potential for Abiesconcolor and Pinusponderosa were studied in relation to concurrent environmental conditions. Up to 86% of variation in water potential was accounted for using irradiance, square root of vapor pressure deficit, height, and stomatal aperture as independent variables in A. concolor while up to 76% was accounted for in P. ponderosa using the same variables. Under comparable environmental conditions, A. concolor experienced lower water potentials than P. ponderosa due to its relative lack of stomatal control and its greater sensitivity to changes in vapor pressure deficit. Height effects were very nearly identical to those predicted by the cohesion theory. A procedure for estimating available soil moisture is suggested.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 805D-805
Author(s):  
D.B. Rowe ◽  
F.A. Blazich ◽  
F.C. Wise ◽  
S.L. Warren

Containerized, 1.5-year-old, hedged stock plants of four full-sib families of loblolly pine (Pinus taeda L.) were fertilized daily with a complete nutrient solution containing 9 ppm P, 38 ppm K, and either 0, 5, 10, 20, or 40 ppm N. Softwood cuttings were removed in May and July 1994, and placed under intermittent mist at two locations: Raleigh and Summerville. Overall rooting was significantly greater at Summerville (49%) than in Raleigh (37%). Cuttings taken in May rooted at significantly greater percentages than the July cuttings (57% vs. 29%). Overall rooting (56%) and root area (12 cm2) were greatest at 40 ppm N, whereas root number (two), root dry weight (66 mg), and total root length (108 cm) were maximized at 20 ppm N. Although family was not significant, a family × nitrogen interaction occurred. For both rooting trials, maximum rooting (83%) was noted for May cuttings rooted in Summerville, which were taken from stock plants of one family fertilized with 20 ppm N.


2020 ◽  
Author(s):  
Cornelius Senf ◽  
Allan Buras ◽  
Christian Zang ◽  
Anja Rammig ◽  
Rupert Seidl

<p>Drought has been suggested as major driver of large-scale forest diebacks, but quantitative evidence covering large spatial and long temporal scales is rare for Europe. Combining spatially explicit maps of canopy mortality (i.e., partial or full loss of the dominant tree canopy) generated from Landsat satellite data for the period 1986-2016 and gridded drought indices (0.5° resolution; including vapor pressure deficit, climatic water balance, and precipitation deficit), we report a consistent link between pulses of above-average tree mortality and drought conditions as measured in all three drought indices. As such, we deliver first quantitative evidence that drought conditions can trigger large-scale forest diebacks across Europe’s forests. A future increase in the severity and intensity of droughts as predicted for Europe might thus have unforeseen consequences for Europe’s forests, with large-scale forest diebacks likely becoming more common in the future.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Victor L. Barradas ◽  
Manuel Esperon-Rodriguez

Urban forests play an important role in regulating urban climate while providing multiple environmental services. These forests, however, are threatened by changes in climate, as plants are exposed not only to global climate change but also to urban climate, having an impact on physiological functions. Here, we selected two physiological variables (stomatal conductance and leaf water potential) and four environmental variables (air temperature, photosynthetically active radiation, vapor pressure deficit, and water availability) to compare and evaluate the ecophysiological vulnerability to climate change of 15 dominant tree species from Mexico City’s urban forest. The stomatal conductance response was evaluated using the boundary-line analysis, which allowed us to compare the stomatal response to changes in the environment among species. Our results showed differential species responses to the environmental variables and identified Buddleja cordata and Populus deltoides as the least and most vulnerable species, respectively. Air temperatures above 33°C and vapor pressure deficit above 3.5 kPa limited the stomatal function of all species. Stomatal conductance was more sensitive to changes in leaf water potential, followed by vapor pressure deficit, indicating that water is a key factor for tree species performance in Mexico City’s urban forest. Our findings can help to optimize species selection considering future climate change by identifying vulnerable and resilient species.


Sign in / Sign up

Export Citation Format

Share Document