scholarly journals (343) Weed Controlin Vineyard Following Fall and Spring Application of Selected Herbicide Combinations

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1024E-1025
Author(s):  
Sorkel Kadir ◽  
Kassim Al-Khatib

Soil residual herbicides registered for use on grapes can be applied from fall to spring, before weed emergence. However, ample early-spring moisture and warm weather may enhance weed emergence before herbicide application in the spring and prevent timely application. Therefore, fall application of herbicides can be beneficial if herbicides would provide adequate weed control in the following spring. Warm and wet winters may enhance herbicide degradation and shorten herbicide residual activity that result in poor weed control the following spring. Fall and spring application of oryzalin or norflurazon applied alone or in combination with diuron, simazine, or oxyfluorfen were evaluated for weed control in commercial vineyards at Oskaloosa and Eudora in northeast Kansas in 2003 and 2004. Weeds were not controlled adequately with oryzalin or norflurazon applied alone. At the end of the growing season, however, weed control was greater with spring than fall application. In addition, weed control with norflurazon was slightly greater than oryzalin. Norflurazon or oryzalin applied in combination with simazine, diuron, or oxyfluorfen controlled more weeds than norflurazon or oryzalin applied alone. The greatest control was with norflurazon or oryzalin applied with oxyfluorfen. In general, all herbicide combinations applied in the spring and fall provided similar weed control 4 months after spring application. However, at the end of the growing season, weed control was 10% to 20% greater when herbicides applied in the spring than fall. This study showed that acceptable weed control can be achieved when norflurazon or oryzalin is applied with oxyfluorfen and diuron in the fall.

2006 ◽  
Vol 20 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Sorkel Kadir ◽  
Kassim Al-Khatib

Soil-residual herbicides can be applied to the soil under grapevines during fall or spring before weed emergence. But, early spring moisture and warm weather conditions may enhance weed emergence before spring herbicide applications. Therefore, fall application of herbicide can be useful if the herbicides provide adequate weed control the following spring and summer. Fall and spring applications of oryzalin or norflurazon, applied alone or in combination with diuron, simazine, or oxyfluorfen, were evaluated for weed control in grape at Oskaloosa and Eudora in northeast Kansas in the 2002 to 2003 and 2003 to 2004 growing seasons. Weeds were not controlled adequately with oryzalin or norflurazon applied alone. At the end of the growing season, weed control was 10 to 20% greater when herbicides were applied in the spring than when applied in the fall. In addition, weed control with norflurazon was slightly greater than with oryzalin. In general, norflurazon or oryzalin applied in combination with simazine, diuron, or oxyfluorfen gave greater weed control than norflurazon or oryzalin applied alone. The greatest control was with norflurazon or oryzalin applied with oxyfluorfen. In general, all herbicide combinations provided similar weed control 4 mo after spring treatment in 2003 and 3 mo after spring treatment in 2004. This study showed that acceptable weed control can be achieved when norflurazon or oryzalin is applied with oxyfluorfen or diuron in the fall.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 880c-880
Author(s):  
Joseph G. Masabni ◽  
Dwight E. Wolfe

Flumioxazin (Chateau 51WG) is an herbicide for the preemergence and early postemergence control of broadleaves and grasses. Chateau was recently labeled for use in non-bearing fruit trees and bearing grapes. Long-term weed control in apple, peach, and blueberry was investigated following fall application of herbicides. Treatments consisted of simazine 2.8 kg a.i., norflurazon 2.24 kg a.i., napropamide 2.24 kg a.i., and oryzalin 2.24 kg a.i. were applied on 11 Nov. 2003. Flumioxazin was also applied at 0.1 and 0.43 kg ai on apple and peach. All treatments included glyphosate 1 lb a.i. for burndown control of preexisting weeds. Weed control evaluation in mid-April or 4 months after application showed that flumioxazin-treated plots had no weeds present and no weed regrowth. Plots treated with napropamide, norflurazon, and oryzalin showed significant regrowth of dandelion, common ragweed, and chickweed. Simazine plots had fewer weeds germinating than the other herbicides. By early June or 6 months after application, no differences in residual weed control were observed for all treated plots when compared to the control. All plots were equally weedy and required immediate floor management measures. It appears that flumioxazin weed control benefit was exhausted by 6 months after application, compared to 4 months for all other herbicides. Fall application of flumioxazin can eliminate the need for early spring weed control. This time saved can be spent on other important activities such as pruning and disease and insect control.


1999 ◽  
Vol 13 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Thomas C. Mueller ◽  
David R. Shaw ◽  
William W. Witt

The dissipation of four commonly used soil-applied herbicides was examined in a standardized field experiment in three southern states (Kentucky, Mississippi, and Tennessee). Averaged over the three soils and 2 yr, the relative order of increasing half-life defined as time for 50% disappearance in days (DT50) was acetochlor (6.3 d) = alachlor (6.3 d) = SAN 582 (7.3 d) < metolachlor (13.7 d). Metolachlor was the most persistent in the soil surface, and this could potentially translate into greater duration of weed control into the growing season. All examined herbicides had a DT50that averaged less than 14 d in all states in both years, so full-season weed control of susceptible species would not be expected. Rapid herbicide degradation was encouraged in these field sites by adequate to excessive soil moisture and warm temperatures throughout the sampling interval. The soils also were light textured, and the lower adsorption of the herbicide allowed for degradation ease and perhaps leaching below the sampling depth.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 627g-628
Author(s):  
Martin L. Kaps ◽  
Marilyn B. Odneal

Preemergent herbicides were applied to vineyards in the southcentral Missouri Ozark region. These were applied at full label rate in the fall or in the spring, at half rate in the fall and again in the spring, and as tank-mixes in the spring. Days of acceptable annual weed control (30% or less cover) beyond the untreated control were determined for these application methods over three years. The fall applications were effective at controlling winter annual weeds and early summer annual weed growth the following season. By mid summer the fall applied preemergents lost residual activity. Splitting the label rate between fall and spring was no better than a full rate spring application at increasing the days of acceptable summer annual weed control. Single preemergent spring application performed as well as tank-mixes.


Weed Science ◽  
1969 ◽  
Vol 17 (4) ◽  
pp. 428-431 ◽  
Author(s):  
D. L. Linscott ◽  
A. A. Akhavein ◽  
R. D. Hagin

Land was prepared conventionally in early spring for the planting of small seeded legumes. Planting was delayed to allow emergence of weeds. We applied 1,1'-dimethyl-4,4'-bipyridinium salts (paraquat) and planted legumes immediately afterwards. Stage of weed growth, time of herbicide application, rate of chemical applied, and the methods of seeding were variables imposed. Paraquat (plus surfactant) applied at 1.1 and 2.2 kg/ha to emerged weeds prior to the seeding of legumes controlled quackgrass [Agropyron repens(L.) Beauv.] sufficiently to allow excellent establishment of alfalfa (Medicago sativaL.) and birdsfoot trefoil (Lotus corniculatusL.). A paraquat application delayed until yellow nutsedge (Cyperus esculentusL.) was at least 10 cm in height, followed by a disking, controlled the sedge sufficiently to allow legume establishment. For annual weed control, 0.3% kg/ha of paraquat was sufficient. Drilling as a method of seeding gave better legume stands than did surface-seeding techniques.


2004 ◽  
Vol 18 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Michael J. Walsh ◽  
Richard D. Devlin ◽  
Stephen B. Powles

The earliest possible seeding of wheat crops in the southern Australian dryland cropping zone is prevented by the lack of a weed control practice that adequately controls initial weed seedling emergence at the start of the growing season. The objective of this study was to determine the potential for using residual herbicides applied up to 1 mo before the start of the growing season to control rigid ryegrass seedlings that emerge after the season-opening rains. In a series of glasshouse studies, S-metolachlor and propyzamide were found to effectively persist on the soil surface through prolonged exposure to hot, dry, and intense sunlight conditions, preventing the establishment of rigid ryegrass seedlings. In addition, these herbicides caused little or no effect on subsequently seeded wheat. It also was determined that S-metolachlor had the potential to retain efficacy on rigid ryegrass seedlings after 12 wk of exposure on the soil surface to these conditions. These studies have identified two herbicides with the potential for use at the novel application timing, i.e., before the commencement of the growing season, in Mediterranean climates of southern Australia.


1996 ◽  
Vol 14 (4) ◽  
pp. 221-227
Author(s):  
James B. Calkins ◽  
Bert T. Swanson ◽  
Debra L. Newman

Abstract Fourteen herbicides or herbicide combinations, wood chip mulch, chipped rubber tire mulch, and newspaper mulch were evaluated for weed control efficacy and phytotoxicity using 12 species of herbaceous perennials under field growing conditions. The effect of herbicide application time was monitored by applying herbicides to dormant and actively growing plants. Herbicide and mulch treatments were compared to weeded and non-weeded controls. Herbicide phytotoxicity was dependent on age and species of herbaceous perennial and time of herbicide application. Herbicide injury was generally greater for young plants compared to established plants and phytotoxicity was usually reduced when herbicides were applied to dormant rather than actively growing plants. Injury was sometimes greater when herbicides were applied in early spring compared to applications made after complete herbaceous perennial emergence. Injury to young shoots that had emerged prior to the earliest possible time that herbicides could be applied in the spring was probably involved. Applying herbicides in the fall may avoid such injury. Mulching field grown perennials with wood chips provided the most effective weed control and often the best quality plants. With the exceptions of Hemerocallis ‘After Dark’ and Phlox maculata ‘Omega’, the herbaceous perennials evaluated were tolerant of most of the herbicides applied. Several herbicides, including Balan 2.5G at 3.36 kg ai/ha (3.0 lb ai/A), Snapshot 80DF at 4.48 kg ai/ha (4.0 lb ai/A), and Stomp 60WDG at 4.48 kg ai/ha (4.0 lb ai/A), demonstrated potential for weed control in herbaceous perennial production systems and landscape plantings. Goal 1.6EC at 1.68 kg ai/ha (1.5 lb ai/A) and Ronstar 50WP at 3.92 kg ai/ha (3.5 lb ai/A) were often phytotoxic when applied to herbaceous perennials.


2012 ◽  
Vol 22 (5) ◽  
pp. 638-643 ◽  
Author(s):  
Amit J. Jhala ◽  
Analiza H.M. Ramirez ◽  
Megh Singh

Herbicides are usually applied multiple times by growers for season long weed control in Florida citrus (Citrus sp.). Rimsulfuron, a sulfonylurea herbicide has been recently registered for control of certain grasses and broadleaf weeds in citrus. To increase the weed control spectrum and reduce application cost, citrus growers often prefer to tank mix herbicides. Field experiments were conducted in 2010 and 2011 in citrus groves in central Florida to evaluate weed control efficacy and crop safety of rimsulfuron applied alone or in tank mixes with flumioxazin, pendimethalin, or oryzalin. Herbicides were applied sequentially in spring and fall in both years on the same experimental plot. Results suggested that rimsulfuron applied alone controlled >80% broadleaf and grass weeds up to 30 days after treatment (DAT) and was comparable to tank mixing rimsulfuron with pendimethalin or oryzalin; however, control was reduced beyond 30 DAT. Rimsulfuron tank mixed with flumioxazin was the most effective treatment at 30 and 60 DAT that provided, respectively, ≥88% and >75%, control of broadleaf weeds including brazil pusley (Richardia brasiliensis), dog fennel (Eupatorium capillifolium), common ragweed (Ambrosia artemisiifolia), cotton weed (Froelichia floridana), and virginia pepperweed (Virginia virginicum) compared with other treatments. Control of natalgrass (Melinis repens) was higher in all tank mix treatments compared with rimsulfuron applied alone with no difference among tank mix partners. Rimsulfuron tank mixed with pendimethalin or oryzalin had no advantage over rimsulfuron applied alone for control of broadleaf weeds. Among sequential applications, weed control was better after fall herbicide application (August) compared with spring (April) because of residual activity of fall applied herbicides. Rimsulfuron tank mixed with flumioxazin will provide citrus growers with an additional weed control option.


2019 ◽  
Vol 33 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Kurt M. Vollmer ◽  
Mark J. VanGessel ◽  
Quintin R. Johnson ◽  
Barbara A. Scott

AbstractTimely herbicide applications for no-till soybean can be challenging given the diverse communities of both winter and summer annual weeds that are often present. Research was conducted to compare various approaches for nonselective and preplant weed control for no-till soybean. Nonselective herbicide application timings of fall (with and without a residual herbicide) followed by early-spring (4 wk before planting), late-spring (1 to 2 wk before planting), or sequential-spring applications (4 wk before planting and at planting) were compared. Spring applications also included a residual herbicide. For consistent control of winter annual weeds, two herbicide applications were needed, either a fall application followed by a spring application or sequential-spring applications. When a fall herbicide application did not include a residual herbicide, greater winter annual weed control resulted from early- or sequential-spring treatments. However, application timings that effectively controlled winter annual weeds did not effectively control summer annual weeds that have a prolonged emergence period. Palmer amaranth and large crabgrass control at 4 wk after planting was better when the spring residual treatment (chlorimuron plus metribuzin) was applied 1 to 2 wk before planting or at planting, compared with 4 wk before planting. Results indicate that in order to optimize control, herbicide application programs in soybean should coincide with seasonal growth cycles of winter and summer annual weeds.


1998 ◽  
Vol 12 (4) ◽  
pp. 569-574 ◽  
Author(s):  
Rakesh S. Chandran ◽  
Jeffrey F. Derr ◽  
S. Wayne Bingham

Duration and spectrum of preemergence (PRE) weed control following isoxaben application at 0.56, 0.84, and 1.12 kg ai/ha in spring, fall, or spring plus fall (double) application were evaluated by field experiments. Residual activity of isoxaben was assessed by monitoring weed counts at two locations for 12 mo after treatment (MAT). Buckhorn plantain and dandelion control from spring-applied isoxaben at 1.12 kg/ha was > 90% at 4 MAT in Blacksburg but dropped to < 51% at 12 MAT. Isoxaben at 1.12 kg/ha applied in fall provided ≥ 90% control of buckhorn plantain for 8–9 MAT, with control ranging from 69 to 91% at approximately 12 MAT. Dandelion control with fall-applied isoxaben at 1.12 kg/ha ranged from 60 to 75%, 8–9 MAT. Fall application of 1.12 kg/ ha isoxaben at Virginia Beach controlled henbit and cornspeedwell for 2–3 MAT. Multiple applications of isoxaben improved weed control at Virginia Beach, but results were inconclusive at Blacksburg. In comparison, oxadiazon controlled white sweet clover and dandelion for 1 MAT following spring application in Blacksburg, but < 65% broadleaf control was observed at 4 MAT. Broadleaf weed control following single application of oxadiazon at 3.36 kg/ha was < 60% at 9 MAT Poor weed control resulted from spring applications of isoxaben and oxadiazon when a 25-cm precipitation occurred within 2 wk after application in one study.


Sign in / Sign up

Export Citation Format

Share Document