scholarly journals Influence of High Tunnel and Field Conditions on Strawberry Growth and Development

HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Sorkel Kadir ◽  
Edward Carey ◽  
Said Ennahli

Plant growth, yield, and fruit quality of two strawberries (Fragaria ×ananassa Duch.)—`Chandler' and `Sweet Charlie'—grown under high tunnels (HTs) were compared with that of field plants during 2002–03 and 2003–04 growing seasons. Plug plants were planted in mid-October 2002 and mid-September 2003 on raised beds covered with black polyethylene mulch. Microclimate of the HTs protected strawberry crowns from winter damage and advanced fruit production 5 weeks earlier than that of plants grown under field conditions. From December to February, average minimum and maximum crown temperatures under the HTs were 5 and 12 °C warmer than those of the field crowns, respectively. The earliest HT fruit were harvested on 7 Apr. 2003 and 11 Mar. 2004. Yield and fruit quality under the HTs were superior to that of field-grown plants. HT plants, especially `Sweet Charlie', bloomed earlier than did field plants, but `Chandler' produced higher yield than `Sweet Charlie' late in the season. Larger fruit with higher soluble solids concentration (SSC) were produced inside the HTs than outside. HT `Sweet Charlie' fruit were sweeter than `Chandler' fruit, but `Chandler' produced larger fruit. Larger leaf area, greater number of leaves and shoot biomass, more branch-crowns, and fewer runners were developed under HTs than field conditions. Total leaf area, leaf production, total shoot biomass, and number of branch-crowns of HT `Chandler' were greater than HT `Sweet Charlie'. Results of this study indicate that strawberry plants under HTs were not only precocious, but also produced higher yields and superior quality to that of field plants. HT conditions suppressed runner growth, but enhanced branch-crown development.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 664d-664
Author(s):  
Mongi Zekri

Because of the many concerns about fruit quality and fruit production of `Ambersweet' cultivar, this study was conducted in Florida to evaluate the performance of this cultivar budded on two rootstocks and grown in three locations. The effects of Cleopatra mandarin (CM) rootstock on tree growth, yield, fruit quality, and leaf mineral concentration were compared to those of Swingle citrumelo (SC). Although tree shape differed with the rootstock, no consistent difference was found in tree growth between the two rootstocks. Significant differences in yield, fruit size, and fruit quality were found between the two rootstocks. Fruit produced on CM were large with a rough, thick peel and poor color. Swingle citrumelo rootstock promoted higher yield and better fruit and juice quality than CM. Earlier fruit maturity and higher soluble solids and juice content were obtained from trees grown on the Flatwoods compared to trees grown on the central ridge. With the exception of magnesium, no consistent difference in leaf mineral concentration was found between the two rootstocks.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 936-944
Author(s):  
Kristine M. Lang ◽  
Ajay Nair ◽  
Kenneth J. Moore

Prior work in a Midwestern United States high tunnel indicated that hybrid and heirloom tomato scions grafted to hybrid rootstock ‘RST-04-106-T’ had a minimal yield increase in the absence of soilborne disease pressure, which underscored the need for continued regional trials of alternative, commercially available tomato rootstocks. Objectives of the present study were to assess yield, fruit quality [pH, soluble solids content (SSC), total titratable acids (TTA), and firmness], and plant growth traits (plant height, stem diameter, and biomass) of grafted tomato with eight different hybrid rootstocks. ‘BHN 589’, a determinate hybrid tomato, was grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, ‘Maxifort’, ‘RST-04-106-T’, and two trial rootstocks, ‘946 TRS’ and ‘980 TRS’. Research was conducted April to September in 2017 and 2018 in a 9.1-m wide × 29.2-m long × 3.7-m tall single-poly high tunnel located at the Iowa State University Horticulture Research Station, Ames, IA. There were five plants per treatment in a randomized complete block design with five replications. Weekly harvests took place 13 times each season. ‘BHN 589’ grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, or ‘Maxifort’ had 30% to 119% more marketable fruit and had a higher marketable fruit weight by 1.3 to 4.1 kg per plant compared with nongrafted plants. Fruit quality differences were minimal in 2017 and null in 2018, as indicated by fruit pH, SSC, TTA, and the SSC:TTA ratio. The same five high-yielding rootstock treatments were the tallest, ranging from 184 to 214 cm in height. In 2017, shoot biomass of ‘BHN 589’ grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, and ‘Maxifort’ was 59 to 100 g more than that of nongrafted plants; in 2018, ‘BHN 589’ grafted to ‘Maxifort’ and ‘DRO141TX’ had the largest shoot biomass at 386 and 315 g, respectively. Overall, the results of this study indicate that ‘Arnold’, ‘DRO141TX’, and ‘Estamino’ may be comparable in performance to the widely used rootstocks ‘Beaufort’ and ‘Maxifort’ when grown under conditions lacking biotic or abiotic stress. Our results provide promising new options for Midwestern U.S. growers of high tunnel tomato who are seeking high-performing rootstocks.


1993 ◽  
Vol 118 (6) ◽  
pp. 868-872 ◽  
Author(s):  
Samuel Mendlinger ◽  
Michael Fossen

The muskmelon (Cucumis melo L.) cultivars Topmark, Galia, No. 1, and BG-84-3 (BG) were examined in a field test for the influence of increased salt concentration (700, 2500, 5000, 7500, and 10,000 ppm) on flower production, vegetative growth, yield, and fruit quality. Increased salinity did not affect the number or timing of staminate and pistillate flowers produced. Increased salinity significantly and to the same extent reduced vegetative growth in the four cultivars. Increased salinity did not affect the number of fruit produced in the four cultivars but reduced mean fruit weight in three. Mean fruit weight and yield of `BG' were not reduced; i.e., `BG' was salt tolerant. Increased salinity increased the soluble solids concentration and slightly improved fruit appearance of all cultivars.


1993 ◽  
Vol 118 (3) ◽  
pp. 326-329 ◽  
Author(s):  
C.V. Economides ◽  
C. Gregoriou

Tree growth, yield, and fruit quality of nucellar `Frost Marsh Seedless' grapefruit (Citrus paradisi Macf.) on 15 rootstocks were evaluated under Cyprus conditions. Over the 9-year production period, trees on Palestine sweet lime, the group of rough lemon, and Citrus volkameriana Pasq. were more productive per unit of tree size, and their cumulative yields per tree were significantly higher than those of trees on sour orange, which is the standard rootstock commercially used in Cyprus. Rootstocks affected fruit size and weight, rind thickness, juice content, total soluble solids concentration (SSC), and total acids, but the differences were not large enough to affect the market value of the fruit, On the basis of the results of this trial and because sour orange is highly susceptible to tristeza, the C. volkameriana and rough lemon group, which are tolerant to tristeza, should be included in further trial plantings as a potential commercial rootstock.


2018 ◽  
Vol 45 (No. 2) ◽  
pp. 76-82 ◽  
Author(s):  
Rodica Soare ◽  
Maria Dinu ◽  
Cristina Babeanu

This study was aimed at observing the effect of the grafting of tomato plants on morphological (vegetative growth), production and nutritive characteristics (quantity and quality of production). For this purpose, the ‘Lorely F1’ cultivar was used as a scion grafted onto the ‘Beaufort’ rootstock. Plants were cultivated with a stem and two stems. The observations collected in this study were concerned with the characteristics of plant growth. The studied morphological characteristics were plant height, stem diameter and number of leaves, and the studied production characteristics were the characteristics of fructification and productivity (the average number of fruit per plant, the average weight of the fruit, production per plant). Particular attention was paid to the nutritional characteristics of the fruit, to the fruit quality (total soluble solids, total sugar, acidity, vitamin C, antioxidant activity (by the Trolox method) and the contents of lycopene and beta-carotene). The results showed that grafting positively influenced the growth and production characteristics. Grafting of tomato plants had an appreciable effect on the vegetative growth of the variant 2-grafted tomatoes with a stem. The best option in terms of productivity and production was the variant 3-grafted tomatoes with two stems, which yielded 9.2 kg per plant. Fruit quality was not improved in any of the grafted variants. 


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 741-744 ◽  
Author(s):  
Gene E. Lester ◽  
John L. Jifon ◽  
D. J. Makus

Netted muskmelon [Cucumis melo L. (Reticulatus Group)] fruit quality (ascorbic acid, β-carotene, total free sugars, and soluble solids concentration (SSC)) is directly related to plant potassium (K) concentration during fruit growth and maturation. During reproductive development, soil K fertilization alone is often inadequate due to poor root uptake and competitive uptake inhibition from calcium and magnesium. Foliar applications of glycine-complexed K during muskmelon fruit development has been shown to improve fruit quality, however, the influence of organic-complexed K vs. an inorganic salt form has not been determined. This glasshouse study investigated the effects of two K sources: a glycine-complexed K (potassium metalosate, KM) and potassium chloride (KCl) (both containing 800 mg K/L) with or without a non-ionic surfactant (Silwet L-77) on melon quality. Orange-flesh muskmelon `Cruiser' was grown in a glasshouse and fertilized throughout the study with soil-applied N–P–K fertilizer. Starting at 3 to 5 d after fruit set, and up to 3 to 5 d before fruit maturity at full slip, entire plants were sprayed weekly, including the fruit, with KM or KCl with or without a surfactant. Fruit from plants receiving supplemental foliar K had significantly higher K concentrations in the edible middle mesocarp fruit tissue compared to control untreated fruit. Fruit from treated plants were also firmer, both externally and internally, than those from non-treated control plants. Increased fruit tissue firmness was accompanied by higher tissue pressure potentials of K treated plants vs. control. In general, K treated fruit had significantly higher SSC, total sugars, total ascorbic acid, and β-carotene than control fruit. Fall-grown fruit generally had higher SSC, total sugars, total ascorbic acid and β-carotene concentrations than spring-grown fruit regardless of K treatment. The effects of surfactant were not consistent but in general, addition of a surfactant tended to affect higher SSC and β-carotene concentrations.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Gerry H. Neilsen ◽  
Denise Neilsen ◽  
Frank Kappel ◽  
T. Forge

‘Cristalina’ and ‘Skeena’ sweet cherry cultivars (Prunus avium L.) on Gisela 6 (Prunus cerasus × Prunus canescens) rootstock planted in 2005 were maintained since 2006 in a randomly blocked split-split plot experimental design with six blocks of two irrigation frequency main plot treatments within which two cultivar subplots and three soil management sub-subplots were randomly applied. The focus of this study was the growth, yield, and fruit quality response of sweet cherry to water and soil management over three successive fruiting seasons, 2009–11, in a cold climate production area. The final 2 years of the study period were characterized by cool, wet springs resulting in low yield and yield efficiency across all treatments. Soil moisture content (0- to 20-cm depth) during the growing season was often higher in soils that received high-frequency irrigation (HFI) compared with low-frequency irrigation (LFI). HFI and LFI received the same amount of water, but water was applied four times daily in the HFI treatment but every other day in the LFI treatment. Consequently, larger trunk cross-sectional area (TCSA) and higher yield were found on HFI compared with LFI trees. Soil management strategies involving annual bloom time phosphorus (P) fertigation and wood waste mulching did not affect tree vigor and yield. Increased soluble solids concentration (SSC) occurred with LFI. Decreased SSC occurred with delayed harvest maturity in trees receiving P fertigation at bloom. The largest fruit size was correlated for both cultivars with low crop loads ranging from 100 to 200 g fruit/cm2 TCSA. Overall cool, wet spring weather strongly affected annual yield and fruit quality, often overriding cultivar and soil and water management effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ikinci

Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning.


2018 ◽  
Vol 28 (4) ◽  
pp. 459-469 ◽  
Author(s):  
Matthew B. Bertucci ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
Penelope Perkins-Veazie ◽  
...  

Grafting watermelon (Citrullus lanatus) is a common practice in many parts of the world and has recently received increased interest in the United States. The present study was designed to evaluate early season growth, yield, and fruit quality of watermelon in response to grafting and in the absence of known disease pressure in a fumigated system. Field experiments were conducted using standard and mini watermelons (cv. Exclamation and Extazy, respectively) grafted onto 20 commercially available cucurbit rootstocks representing four species: giant pumpkin (Cucurbita maxima), summer squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash [ISH (C. maxima × Cucurbita moschata)]. Nongrafted ‘Exclamation’ and ‘Extazy’ were included as controls. To determine early season growth, leaf area was measured at 1, 2, and 3 weeks after transplant (WAT). At 1 WAT, nongrafted ‘Exclamation’ produced the smallest leaf area; however, at 3 WAT, nongrafted ‘Exclamation’ produced the largest leaf area in 2015, and no differences were observed in 2016. Leaf area was very similar among rootstocks in the ‘Extazy’ study, with minimal differences observed. Marketable yield included fruit weighing ≥9 and ≥3 lb for ‘Exclamation’ and ‘Extazy’, respectively. In the ‘Exclamation’ study, highest marketable yields were observed in nongrafted ‘Exclamation’, and ‘Exclamation’ grafted to ‘Pelops’, ‘TZ148’, and ‘Coloso’, and lowest marketable yields were observed when using ‘Marvel’ and ‘Kazako’ rootstocks, which produced 47% and 32% of nongrafted ‘Exclamation’ yield, respectively. In the ‘Extazy’ study, the highest marketable yield was observed in nongrafted ‘Extazy’, and ‘Kazako’ produced the lowest yields (48% of nongrafted ‘Extazy’). Fruit quality was determined by measuring fruit acidity (pH), soluble solids concentration (SSC), lycopene content, and flesh firmness from a sample of two fruit from each plot from the initial two harvests of each year. Across both studies, rootstock had no effect on SSC or lycopene content. As reported in previous studies, flesh firmness was increased as a result of grafting, and nongrafted ‘Exclamation’ and ‘Extazy’ had the lowest flesh firmness among standard and mini watermelons, respectively. The present study evaluated two scions with a selection of 20 cucurbit rootstocks and observed no benefits in early season growth, yield, or phytonutrient content. Only three of 20 rootstocks in each study produced marketable yields similar to the nongrafted treatments, and no grafted treatment produced higher yields than nongrafted ‘Exclamation’ or ‘Extazy’. Because grafted seedlings have an associated increase in cost and do not produce increased yields, grafting in these optimized farming systems and using fumigated soils does not offer an advantage in the absence of soilborne pathogens or other stressors that interfere with watermelon production.


2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


Sign in / Sign up

Export Citation Format

Share Document