scholarly journals Timing the Establishment of Kentucky Bluegrass : Perennial Ryegrass Mixtures for Football Fields

HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 240-244 ◽  
Author(s):  
John C. Stier ◽  
Eric J. Koeritz ◽  
Mark Garrison

Sports field construction contracts in cool-season areas often stipulate a 9- to 12-month period between seeding and opening for play. Seed mixtures are usually dominated by slow-establishing Kentucky bluegrass (KBG; Poa pratensis L.) and contain lower proportions of perennial ryegrass (PRG; Lolium perenne L.) for quick cover. Our objective was to evaluate the effect of planting time on three KBG : PRG mixes, a 100% PRG blend, and their ability to sustain football-type traffic. Field plots were seeded in late summer, as a dormant planting in late fall, and in the following spring. Plots received simulated football traffic, split for one or four weekly games, from mid-August through mid-November of the year in which spring seeding occurred. The experimental design was a strip-split-plot, randomized block with four replications. The study was repeated a second year. All seeding dates provided acceptable turf quality regardless of seed type by September. However, summer seedings of KBG-based mixtures provided better turf quality than mixtures planted in the spring, whereas dormant-seeded mixtures provided the poorest turf quality. Turf seeded with 100% PRG was less sensitive to seeding date, with summer or spring seedings providing similar quality and dormant seedings superior to KBG-based dormant seedings. Summer seedings also resulted in the least amount of broadleaf weeds the next year with dormant seedings having the most weeds, particularly with plots seeded to 95% KBG. All KBG-based seed mixtures provided turf containing ≈50% KBG or more by September, although the amount of KBG remaining after traffic was significantly greatest in plots seeded to 95% KBG and least in plots seeded with 70% KBG. Pure PRG swards provided acceptable turf quality throughout the traffic period but should be used cautiously as a result of winterkill potential and crown rust disease (Puccinia coronata Corda f. sp. agropyri Erikss.). Different amounts of traffic did not affect turf species proportions. The most consistently desirable results may be obtained with a mixture containing 70% to 80% KBG and 30% to 20% PRG, respectively. Mixtures dominated by KBG should be seeded in late summer for best results.

2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


1973 ◽  
Vol 53 (1) ◽  
pp. 69-73 ◽  
Author(s):  
W. E. CORDUKES ◽  
A. J. MACLEAN

Addition of CaCl2∙2H2O at the rate of 2,000 ppm to give a conductivity of 7.2 mmhos/cm in a saturated paste extract of three soils varying in texture from sand to clay loam had no apparent effects on the quality of turf of Kentucky bluegrass, Poa pratensis L., creeping red fescue, Festuca rubra L., and perennial ryegrass, Lolium perenne L., grown in pot tests. When the rate was increased to 8,000 ppm and the conductivity to about 20 mmhos/cm, the turfgrass deteriorated markedly in the clay loam and the sandy loam and to a lesser degree in the sand. All species reacted similarly to the detrimental effect of salt in the soils, and the deterioration in turf quality was accompanied by a decline in root production. The concentration of chloride in leaf tissue usually increased with increasing amounts of salt in the soils and tended to be highest in perennial ryegrass and lowest in creeping red fescue. At the higher rates of salt addition, the amounts of chloride in the turfgrass tended to be lower on the sand than on the other soils.


2019 ◽  
Vol 37 (1) ◽  
pp. 19-23
Author(s):  
Julie H. Campbell ◽  
Jason J. Henderson ◽  
John C. Inguagiato ◽  
Victoria H. Wallace ◽  
Anthony Minniti

Abstract Many intensively trafficked areas such as athletic fields and golf courses require constant overseeding to maintain suitable turfgrass cover. Rapid seed germination and development are critical to managing these high wear areas. The objectives of this research were to determine the effect of water aeration, seed soaking duration, and water temperature on mean germination time (MGT) and final germination percentage (FGP) of Kentucky bluegrass (Poa pratensis L., KBG) and perennial ryegrass (Lolium perenne L., PRG). Two separate controlled environment studies were conducted. PRG soaked in aerated water from 8 to 48 h had a 20% decrease in MGT compared to an untreated control, while treated KBG decreased MGT by only 10% compared to an untreated control. Soaking duration and water temperature had significant effects on KBG. KBG MGT was optimized at 20 C (68 F) water temperature with a soaking duration of 24 h. MGT of PRG was optimized when soaked for 8 h while water was aerated. There was no significant difference in FGP for any of the treatments tested. Index words: turfgrass, aeration, seed soaking. Species used in this study: Kentucky bluegrass (Poa pratensis L.); perennial ryegrass (Lolium perenne L.).


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


HortScience ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 97-101 ◽  
Author(s):  
Xunzhong Zhang ◽  
Wenli Wu ◽  
Erik H. Ervin ◽  
Chao Shang ◽  
Kim Harich

Plant hormones play an important role in plant adaptation to abiotic stress, but hormonal responses of cool-season turfgrass species to salt stress are not well documented. This study was carried out to investigate the responses of hormones to salt stress and examine if salt stress-induced injury was associated with hormonal alteration in kentucky bluegrass (KBG, Poa pratensis L.). The grass was grown in a growth chamber for 6 weeks and then subjected to salt stress (170 mm NaCl) for 28 days. Salt stress caused cell membrane damage, resulting in photosynthetic rate (Pn), chlorophyll (Chl), and turf quality decline in KBG. Salt stress increased leaf abscisic acid (ABA) and ABA/cytokinin (CK) ratio; reduced trans-zeatin riboside (ZR), isopentenyl adenosine (iPA), and indole-3-acetic acid (IAA), but did not affect gibberellin A4 (GA4). On average, salt stress reduced ZR by 67.4% and IAA by 58.6%, whereas it increased ABA by 398.5%. At the end of the experiment (day 28), turf quality, Pn, and stomatal conductance (gs) were negatively correlated with ABA and ABA/CK ratio, but positively correlated with ZR, iPA, and IAA. Electrolyte leakage (EL) was positively correlated with ABA and ABA/CK and negatively correlated with ZR, iPA, IAA, and GA4. GA4 was also positively correlated with turf quality and gs. The results of this study suggest that salt stress-induced injury of the cell membrane and photosynthetic function may be associated with hormonal alteration and imbalance in KBG.


1992 ◽  
Vol 6 (4) ◽  
pp. 852-857 ◽  
Author(s):  
J. Christopher Hall ◽  
C. Ken Carey

Effects of linuron on annual bluegrass control and Kentucky bluegrass cultivar tolerance were studied in field and growth chamber experiments. In controlled environment experiments, linuron at 0.06, 0.12, 0.25, 0.50, and 0.75 kg ai ha-1 was applied to pure stands of annual bluegrass and eight Kentucky bluegrass cultivars. Linuron at the two highest rates controlled annual bluegrass, reducing the clipping dry weight by more than 85% 4 wk after treatment, and by 65 to 92% 6 wk after treatment. Growth of Kentucky bluegrass was reduced with the most severe reduction occurring 2 wk after linuron application. All cultivars exhibited normal growth 8 wk after treatment. In field experiments, linuron at rates from 1.5 to 2.0 kg ai ha-1 controlled annual bluegrass in old (> 5 yr) Kentucky bluegrass stands, and in 16 cultivars of 1-yr and 2-yr-old Kentucky bluegrass stands, with little or no damage. At rates of 1.5, 2.0, and 2.5 kg ai ha-1 linuron, damage to newly seeded cultivars was moderate to severe. However, 6 to 7 wk after linuron application to newly seeded cultivars, stand density and turf quality were equivalent to untreated checks.


2016 ◽  
Vol 141 (5) ◽  
pp. 449-456 ◽  
Author(s):  
B. Shaun Bushman ◽  
Lijun Wang ◽  
Xin Dai ◽  
Alpana Joshi ◽  
Joseph G. Robins ◽  
...  

Much of semiarid western North America is salt affected, and using turfgrasses in salty areas can be challenging. Kentucky bluegrass (Poa pratensis L.) is relatively susceptible to salt stress, showing reduced growth, osmotic and ionic stress, and eventual death at moderate or high salt concentrations. Considerable variation exists for salt tolerance among kentucky bluegrass germplasm, but gaining consistency among studies and entries has been a challenge. In this study, two novel kentucky bluegrass accessions recently reported as salt tolerant (PI 371768 and PI 440603) and two cultivars commonly used as references (Baron and Midnight) were compared for their turf quality (TQ), stomatal conductance (gS), leaf water potential (ψLEAF), electrolyte leakage (EL), and accumulation of inorganic ions under salt stress. TQ, ψLEAF, and EL were highly correlated with each other while only moderately correlated with gS. The tolerant accessions showed higher ψLEAF and lower EL than the cultivars Midnight and Baron at increasing salt concentrations and over 28 days of treatment. The accumulation of sodium (Na) and calcium (Ca) in the leaves was highly correlated and did not vary significantly among the four entries. Genes involved in ion transport across membranes, and in antioxidant activities, were significantly induced on salt stress in the tolerant accessions relative to the susceptible. These data indicate the ability of tolerant accessions to ameliorate oxidative stress and prevent EL, and confirmed the tolerance of germplasm previously reported on while indicating mechanisms by which they tolerate the salt stress.


2004 ◽  
Vol 44 (3) ◽  
pp. 353 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of semi and fully enclosed sports stadiums necessitates the ongoing selection, development and assessment of shade-tolerance in turfgrass species. Vertical shoot growth rate is a simple biological measure that may supplement visual turfgrass assessment and provide a useful measure of shade adaptation. Cool-season temperate turfgrasses; Kentucky bluegrass–perennial ryegrass (Poa pratensis L.–Lolium perenne L.), creeping bentgrass (Agrostis palustris Huds.), supina bluegrass (Poa supina Schrad.) and tall fescue (Festuca arundinacea Schreb.), and a warm season species, Bermudagrass (Cynodon dactylon L.), were established in pot and field experiments and subjected to 4 shade treatments (0, 26, 56 or 65% shade) under ambient conditions. Average light readings taken near the winter and summer solstice in full sunlight at midday, were 790 and 1980�μmol/m2.s, respectively. Field and pot trials confirmed supina bluegrass and tall fescue to have the greatest shade tolerance, producing high turf quality under 56 and 65% shade. However, all turfgrass species declined in quality under high shade levels as indicated by an increase in thin, succulent vertical growth, and a less-dense turf sward. Vertical shoot growth rates of all species increased linearly with increasing shade levels. Kentucky bluegrass–perennial ryegrass had the highest rate of increase in vertical shoot elongation under shade, approximately 3.5 times greater than supina bluegrass, which had the lowest. Low rates of increase in vertical shoot elongation under shade indicated shade tolerance whereas high rates inferred shade intolerance.


Sign in / Sign up

Export Citation Format

Share Document