scholarly journals In Vitro Mutation Induction of Saintpaulia Using Ethyl Methanesulfonate

HortScience ◽  
2011 ◽  
Vol 46 (7) ◽  
pp. 981-984 ◽  
Author(s):  
Jong-Yi Fang ◽  
Siguina Traore

This study has been performed to investigate the efficiency of the chemical mutagen ethyl methanesulphonate (EMS) to induce mutations in Saintpaulia. In vitro leaf sections of Saintpaulia cv. Crystobal were exposed to various EMS treatments at 0%, 0.2%, 0.4%, and 0.6% for 30, 60, 120, and 240 min after which adventitious shoots were recovered from the treated explants. Shoots producing at least six leaves were induced to root and the resulting plantlets were transplanted to soil. A total of 1838 plantlets was grown to flowering stage and 10 mutants were identified. Four of the mutants were variegated leaf chimeras and the remaining six presented variations at the level of flower color and/or fringe. Results in the present study showed the efficiency of EMS to induce in vitro mutation of Saintpaulia and the method can be used in the future to assist breeding in this popular ornamental plant.

2019 ◽  
pp. 18-31
Author(s):  
Nonna Fatima Abello ◽  
Tessie Nuñez

Bacterial wilt caused by Ralstonia solanacearum leads to death of infected suckers and reduces the yield of commercially important banana varieties like Lakatan. Among the many varieties of banana, no germplasm with bacterial wilt resistance has been identified yet (Tripathi et al 2004). Mutation induction in plants to develop disease resistance genes using physical or chemical mutagens has been used as alternative to harmful pesticides. To induce mutation for the possible development of resistance to bacterial wilt, shoot tips of Stage 2 in vitro-grown Lakatan plantlets were exposed to 0.1% and 0.2% ethyl methanesulfonate (EMS) for 12 and 24h. Treated and untreated explants were cultured in-vitro to regenerate plantlets. Shoots emerged two days after in vitro inoculation of explants treated with – 0.1% EMS for 12h. Significantly longer shoots also developed from the cultures compared to the untreated explants. The other explants exposed to other treatments had shoot emergence one to three days later. Falcate, curled, irregularly-shaped, and yellowish leaves and pseudostems also developed in EMS-treated cultures. Untreated plantlets exhibited at least one bacterial wilt symptom such as leaf spots, necrosis at pseudostem base, and death six days from the introduction of Ralstonia solanacearum in vitro. Plantlets from explants exposed to 0.1% EMS for 12h did not exhibit disease symptoms even after ten days of exposure to the pathogen and had 100% survival. Seventy one percent of plantlets from explants exposed to 0.1% EMS for 24h and 55% from explants treated with 0.2% EMS for 24h also survived without infection. The surviving plantlets need to be studied further for their ex vitro responses to the pathogen and determine possible genetic changes due to the chemical mutagen treatment.


2019 ◽  
Vol 25 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Carla Fernandes Cruz ◽  
Wolffe Ferreira dos Santos ◽  
Claudinei da Silva Souza ◽  
Marcelo Dias Machado ◽  
Ilio Fealho de Carvalho ◽  
...  

Abstract P. grandiflora is a known ornamental plant with abundant flowering. The flowers exhibit varied coloration with distinct forms and simple folded petals and/or multiple. The objective of this work was to induce regeneration via organogenesis and in vitro flowering of P. grandiflora. Nodal segments of seedlings germinated in vitro were used as explant source for regeneration. Kinetin (KIN) and 6-Benzylaminopurine (BA) were used for the induction of organogenesis. The treatments supplemented with 1.0 and 1.5 mg L−1 BA induced the highest number of adventitious shoots with an average number of 7.0 (±1.55) e 5.4 (±0.83), respectively. The microcuttings obtained from regenerated shoots produced floral buds. The floral buds were located in the axillary and terminal regions of the microcuttings and developed in approximately 10 days of cultivation until the anthesis. The highest number of flower buds was observed in the presence of 0.75 mg L−1 of gibberellic acid. This study opens new perspectives for the establishment of biotechnological tools to be applied for this important ornamental species.


2018 ◽  
Vol 19 (5) ◽  
pp. 1642-1648
Author(s):  
SUYITNO ALOYSIUS ◽  
AZIZ PURWANTORO ◽  
KUMALA DEWI ◽  
ENDANG SEMIARTI

Aloysius S, Purwantoro A, Dewi K, Semiarti E.. 2018. Phenotypic variation and genetic alteration of Spathoglottis plicata resulted from in vitro cultured seed irradiated with X-Ray. Biodiversitas 19: 1642-1648. A terrestrial orchid species among genus Spathoglottis as widely cultivated is S. plicata. Variability development of the species through mutation induction has been carried out, but its morphological variations and genetic changes have not been investigated. The purpose of this study is to identify the phenotypic variation and genetic alteration of S. plicata resulted from in vitro cultured seed irradiated with X-ray. Radiation was given at the doses of 0; 6; 12; 18 and 24 rad. The samples were surviving plants resulted from irradiated seeds. Phenotypic variations observed were the number, length and width of the leaf, number of tiller, and flower characteristics. Genetic alteration was detected from DNA homologous POH1, a key gene determining of shoot morphogenesis. Results show that there are variations of leaf color, length and width of the leaf, and the number of the tiller. Plants start to flower at the age of 30 months. The plants flowering reach 64.7% (WT), 50.0% (6 rad), 33.3% (12 rad), 33.3% (18 rad), and 40% (24 rad). Flower color is ranged from white, white slightly purple, purplish white, light purple, reddish purple and purple, found both in mutants and wild-type groups. The alignment result of POH1 homologous DNA obtained from PCR cDNA shows the nucleotide differences at some points between mutants and wild-type that indicate the occurrence of DNA alteration. X-ray induces the changes of POH1 homologous DNA, but it has no obvious relationship to the flower variation.


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Wenhao Dai ◽  
Victoria Magnusson

Buddleia species is commonly used as a perennial for landscaping as a result of its heavy flowers and long bloom period. However, this species has a few concerns such as lack of flower color, excessive growth, and an invasive nature. Attempts to improve Buddleia using conventional breeding methods have resulted in limited success. In this study, mutagenesis by gamma ray irradiation was used to induce genetic variations. In vitro shoot tips of two Buddleia cultivars, B. davidii ‘Potters Purple’ and Buddleia ‘Lochinch’, were exposed to 0 to 150 Gy gamma rays and then recovered in Murashige and Skoog (MS) medium supplemented with 2.5 μM benzyladenine (BA). Shoots that recovered from the gamma ray treatment were rooted in half-strength MS medium with 0.5 μM naphthalene acetic acid (NAA) and grown in the greenhouse. The growth of shoot tips was inhibited after they were exposed to gamma rays. An average of 50.8% of shoots treated with 50 Gy gamma rays were recovered, whereas only 9.7% and 6.5% of shoots recovered when exposed to 100 and 150 Gy gamma rays, respectively. After transfer to the greenhouse, a few plants showed reduced growth with some dying before they reached the flowering stage. Various variations including characteristics of leaves (shape, size, hairs), stems (shape, internode length, branching), flowers (color, size, and structure), and plant stature were observed. This research demonstrates that in vitro mutation induction using gamma ray irradiation could be a useful protocol to develop new cultivars or genetic materials for further breeding of Buddleia or other related species.


1993 ◽  
Vol 62 (3) ◽  
pp. 619-624 ◽  
Author(s):  
Yu Zhu ◽  
Tetsuyuki Takemoto ◽  
Susumu Yazawa

2015 ◽  
Vol 10 (3) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Megumi Ono ◽  
Tsukasa Iwashina

The flavonoids in the flowers of Edgeworthia chrysantha, Pittosporum tobira and Wisteria floribunda were isolated and identified. Quercetin and kaempferol 3- O-glucosides and 3- O-rutinosides were found in E. chrysantha, and quercetin 3- O-rutinoside, 3- O-glucoside and 3- O-pentosylrhamnosylglucoside, kaempferol 3- O-robinobioside, 3- O-rutinoside, 3- O-glucoside and 3- O-pentosylrhamnosylglucoside, and isorhamnetin 3- O-rutinoside were isolated from P. tobira. Ten flavonoids, quercetin 3- O-sophoroside, 3- O-rutinoside, 3- O-glucoside, kaempferol 3- O-sophoroside and 3- O-glucoside, luteolin 5- O-glucoside, 7- O-glucoside and 7- O-hexoside, and apigenin 7- O-glucoside and 4′- O-hexoside were isolated from W. floribunda. The major pigments of E. chrysantha were carotenoids. Their content decreased with the change in flower color to white from yellow via cream, and total flavonoid content also slightly decreased by ca. 0.8 in cream and ca. 0.9 fold in white flowers. In contrast with E. chrysantha, white flowers of P. tobira turn to cream and then yellow in which the major pigments are also carotenoids. In this species, both carotenoid and flavonoid contents are gradually increased from white to yellow flowers. Though the petal color of Wisteria floribunda is mauve, due to anthocyanin pigments, the yellow areas are due to carotenoids; these turn to white in the late flowering stage. However, their flavonoid contents were essentially the same among the yellow, cream and white spots of flags. Thus, it was shown by HPLC analysis of the flower flavonoids of E. chrysantha, P. tobira and W. floribunda, although the visible pigments such as carotenoids and anthocyanins are quantitatively varied, the quantitative variation in UV-absorbing substances, such as flavones and flavonols, differs with plant species.


2018 ◽  
Vol 9 (3) ◽  
pp. 475-480
Author(s):  
Paulo Tarso Barbosa Sampaio ◽  
Lyana Silva Jardim ◽  
Ariel Dotto Blind ◽  
Flavio Mauro Souza Bruno

Somatic embryogenesis from callus induced in epicotyl and hypocotyl segments can be viable native species in order to better -benefit ratio costs, and rates of clonal multiplication. In this sense, two trials were established to induce callus and adventitious buds on hypocotyl and epicotyl segments of cumaru bean seedlings germinated in vitro in different concentrations and combinations of growth regulators. At first, we used the MS medium supplementwith ANA (0.0, 1.5 mg.L-1) and TDZ (0.0, 4.0 and 8.0 mg.L-1) distributed in factorial 2 x 3 x 2 (x auxin cytokinin x explant) with eight replications. In the second, it was used the WPM medium supplemented with BAP (2.0 mg L-1) and plus 2,4-D (2.0 and 4.0 mg L-1) in a factorial 2 x 2 (auxin x explant) with 15 repetitions each. They were evaluating callus formation and the average number of adventitious shoots during the period of 90 days. The results indicated that the highest average for callus formation was observed when the explants were subjected to concentrations of 8.0 mg L-1 TDZ combined with 1.5 mg L-1 ANA in MS medium. For the formation of buds, the WPM medium plus 2.0 mg L-1 2,4-D in the second experiment, induced higher number of shoots, being significant the use of auxin, and its interaction with the type of explant.


2018 ◽  
Vol 5 (3) ◽  
pp. 111-118 ◽  
Author(s):  
Elmi Irmayanti Azzahra ◽  
Syarifah Iis Aisyah ◽  
Diny Dinarti ◽  
Krisantini Krisantini

Etlingera elatior is tropical ornamental plant commonly called “torch ginger” from Zingiberaceae family. Conventional breeding of E. elatior is limited by cross incompatibility, poor fruit set and low seed production.  In this study irradiation of E. elatior with Gamma ray performed to induce mutation. This study was aimed to increase morphological diversity and to obtain unique morphological characters to increase the aesthetic value of E. elatior as ornamental plants and cut flower. Two genotypes of E. elatior, red and white flowers, were tested. The LD20, LD35, and LD50 were determined following intermittent (split dose) Gamma irradiation with a two-hour gap between each gamma ray shot. Red genotype E. elatior explants were irradiated with dose of 3 + 3 Gy (LD20); 4 + 4 Gy (LD35) and 5 + 5 Gy (LD50); white genotype were irradiated with a dose of 2 + 2 Gy (LD20); 2.8 + 2.8 Gy (LD35) and 3.7 + 3.7 Gy (LD50). Non-irradiated explants were set as control.  The results of this study indicated that the increase in dose of gamma ray irradiation changed shoot length and number of leaves in the red genotype per explant as compared to control. Morphological changes occurred in leaf shape at 5 + 5 Gy and 3.7 + 3.7 Gy and formation of variegated leaves at 2.8 + 2.8 Gy and 5 + 5 Gy. Keywords: mutation breeding, ornamental plant, split irradiation dose, torch ginger, Zingiberaceae


Sign in / Sign up

Export Citation Format

Share Document