scholarly journals Horticultural and other Factors Affecting Aroma Volatile Composition of Small Fruit

2001 ◽  
Vol 11 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Charles F. Forney

Volatile compounds are responsible for the aroma and contribute to the flavor of fresh strawberries (Fragari×anannassa), red raspberries (Rubus idaeus), and blueberries (Vaccinium sp.). Strawberry aroma is composed predominately of esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The aroma of raspberries is composed of a mixture of ketones and terpenes. In highbush blueberry (Vaccinium corymbosum), aroma is dominated by aromatic hydrocarbons, esters, terpenes and long chain alcohols, while in lowbush blueberries (Vaccinium angustifolium), aroma is predominated by esters and alcohols. The composition and concentration of these aroma compounds are affected by cultivar, fruit maturity, and storage conditions. Volatile composition varies significantly both quantitatively and qualitatively among different cultivars of small fruit. As fruit ripen, the concentration of aroma volatiles rapidly increases closely following pigment formation. In storage, volatile concentrations continue to increase but composition depends on temperature and atmosphere composition. Many opportunities exist to improve the aroma volatile composition and the resulting flavor of small fruit reaching the consumer.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 515C-515
Author(s):  
Charles F. Forney

Volatile compounds make a significant contribution to the quality and storage life of fresh strawberries, blueberries, and raspberries. Strawberry aroma is composed predominately of esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The major volatiles contributing to aroma include ethyl butanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, ethyl hexanoate, methyl butanoate, linalool, and methyl hexanoate. In lowbush (wild) blueberries, aroma is predominated by esters and alcohols including ethyl and methyl methylbutanoates, methyl butanoate, 2-ethyl-1-hexanol, and 3-buteneol, while highbush blueberry aroma is dominated by aromatic compounds, esters, terpenes and long chain alcohols. The aroma of raspberries is composed of a mixture of ketones and terpenes, including damascenone, ionone, geraniol, and linalool. The composition and concentration of these aroma compounds are affected by fruit maturity and storage conditions. As fruit ripen, the concentration of aroma volatiles rapidly increases. This increase in volatile synthesis closely follows pigment formation both on and off the plant. In strawberry fruit, volatile concentration increases about 4-fold in the 24-h period required for fruit to ripen from 50% red to fully red on the plant. In storage, volatile composition is affected by storage temperature, duration, and atmosphere. Postharvest holding temperature and concentrations of O2 and CO2 can alter the quantity and composition of aroma volatiles. The effects of postharvest environments on volatile composition will be discussed.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2263-2267 ◽  
Author(s):  
Carlo Fallovo ◽  
Valerio Cristofori ◽  
Emilio Mendoza de-Gyves ◽  
Carlos Mario Rivera ◽  
Roberto Rea ◽  
...  

Accurate and nondestructive methods to determine individual leaf areas of plants are a useful tool in physiological and agronomic research. Determining the individual leaf area (LA) of small fruit like raspberry (Rubus idaeus L.), redcurrant (Ribes rubrum L.), blackberry (Rubus fruticosus L.), gooseberry (Ribes grossularia L.), and highbush blueberry (Vaccinium corymbosum L.) involves measurements of leaf parameters such as length (L) and width (W) or some combinations of these parameters. A 2-year investigation was carried out during 2006 (on seven raspberry, seven redcurrant, six blackberry, five gooseberry, and two highbush blueberry cultivars) and 2007 (on one cultivar per species) under open field conditions to test whether a model could be developed to estimate LA of small fruits across cultivars. Regression analysis of LA versus L and W revealed several models that could be used for estimating the area of individual small fruit leaves. A linear model having LW as the independent variable provided the most accurate estimate (highest R 2, smallest mean square error, and the smallest predicted residual error sum of squares) of LA in all small fruit berries. Validation of the model having LW of leaves measured in the 2007 experiment coming from other cultivars of small fruit berries showed that the correlation between calculated and measured small fruit berries LAs was very high. Therefore, these models can estimate accurately and in large quantities the LA of small fruit plants in many experimental comparisons without the use of any expensive instruments.


2014 ◽  
Vol 26 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Karolina Kozos ◽  
Ireneusz Ochmian ◽  
Piotr Chełpiński

ABSTRACT Controlled atmosphere storage allows for the long-term and short-term storage of fruit without a significant decrease in quality, resulting in a longer shelflife of fresh fruit. The Department of Horticulture at the West Pomeranian University of Technology in Szczecin conducted research on the effects of post-harvest precooling (3-4°C within two hours) and storage conditions (conventional cold room and controlled atmosphere storage) on fruit firmness, chemical composition, colour and weight loss. After six weeks of storage, it was found that the quality of fruit had declined. In comparison with fresh fruit, the harvest was found to have lost weight and darkened in colour. In addition, a decrease in firmness and the content of ascorbic acid and polyphenolic compounds was also observed. The fruits that were stored in a cold room with a controlled atmosphere and rapidly chilled immediately after harvest were the least affected. In addition, the research showed that there was a high correlation between the anthocyanin index and the polyphenol content in the fruits. To maintain the high quality of the fruit, the fruit must be very rapidly cooled soon after harvest and stored under optimal conditions - a cold room with a controlled atmosphere.


2021 ◽  
Vol 289 ◽  
pp. 110468
Author(s):  
Haley Sater ◽  
Luís Felipe V. Ferrão ◽  
James Olmstead ◽  
Patricio R. Munoz ◽  
Jinhe Bai ◽  
...  

2013 ◽  
Vol 138 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Hirotoshi Tsuda ◽  
Hisato Kunitake ◽  
Mai Yamasaki ◽  
Haruki Komatsu ◽  
Katsunori Yoshioka

With crosses between colchicine-induced tetraploid shashanbo (Vaccinium bracteatum section Bracteata) and tetraploid highbush blueberry ‘Spartan’ (Vaccinium corymbosum section Cyanococcus), intersectional hybrids were produced. The hybridity of these plants was confirmed based on DNA markers and morphological characteristics. The morphological characteristics, blooming date, and ripening period of the hybrids were intermediate between those of the parents. Ploidy analyses by flow cytometry and chromosome counting revealed that these hybrids were tetraploid. Four hybrids set fruit in the field and these two hybrids showed high pollen stainability. It was noteworthy that fruit of two hybrids had high soluble solids concentration compared with ‘Spartan’ and the fruit pulp of the hybrids was tinged with red as shashanbo. These hybrids could be useful in breeding new cultivars with high sugar content, abundant phytochemicals, extensive environmental adaptability as well as late flowering and fruit maturity.


2000 ◽  
Vol 125 (4) ◽  
pp. 498-504 ◽  
Author(s):  
Zhiguo Ju ◽  
William J. Bramlage

Influences of fruit maturity, AVG and ethephon preharvest treatments, and storage conditions on cuticular phenolic concentration, α-farnesene accumulation and oxidation, and scald development of `Delicious' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] were studied. Advanced maturity and ethephon treatment increased free phenolics in fruit cuticle at harvest, while AVG treatment caused a reduction. Free cuticular phenolics increased during early storage in ethephon-treated and nontreated fruit but not in AVG-treated apples. Advanced maturity and ethephon did not alter α-farnesene accumulation overall, but reduced conjugated triene (CT281) formation and scald development. When stored in a low-ethylene room (<1 μL·L-1), AVG-treated fruit accumulated very low levels of α-farnesene and CT281 and did not develop scald after 6 months at 0 °C. When stored in a commercial room (ambient ethylene >5 μL·L-1), the AVG-treated and control fruit accumulated similar amounts of α-farnesene and CT281 and developed similar percentages of scald. In general, free phenolic concentrations in fruit cuticle were negatively correlated with CT281 formation and scald development of apples. Chemical names used: aminoethoxyvinylglycine (AVG); 2-chloroethylphosphonic acid (ethephon).


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 515B-515
Author(s):  
W. Kalt ◽  
J.E. McDonald ◽  
S. MacKinnon

Fruit and vegetable components that possess antioxidant capacity are being actively investigated because of the purported impact of dietary antioxidants on human health. Phenolic components, including anthocyanins, are believed to be major contributors to the antioxidant capacity of many small fruit species. Various horticultural factors have been examined with respect to anthocyanin and phenolic content, and antioxidant capacity of small fruit, especially Vaccinium species. Vaccinium species, and certain other fruits, had a high antioxidant capacity compared to strawberries and raspberries. However, genotypic variation in these characteristics was substantial among wild blueberry clones. Fruit maturity did not influence antioxidant capacity, although phenolic profiles changed dramatically during ripening. Fresh storage of certain ripe fruit at 20 °C led to increased anthocyanin content and increased antioxidant capacity. Certain food processing factors, such as heat and oxygen, decreased the antioxidant capacity of blueberry products.


Sign in / Sign up

Export Citation Format

Share Document