scholarly journals 676 Effects of Volatiles on Postharvest Shelf Life and Quality

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 515C-515
Author(s):  
Charles F. Forney

Volatile compounds make a significant contribution to the quality and storage life of fresh strawberries, blueberries, and raspberries. Strawberry aroma is composed predominately of esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The major volatiles contributing to aroma include ethyl butanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, ethyl hexanoate, methyl butanoate, linalool, and methyl hexanoate. In lowbush (wild) blueberries, aroma is predominated by esters and alcohols including ethyl and methyl methylbutanoates, methyl butanoate, 2-ethyl-1-hexanol, and 3-buteneol, while highbush blueberry aroma is dominated by aromatic compounds, esters, terpenes and long chain alcohols. The aroma of raspberries is composed of a mixture of ketones and terpenes, including damascenone, ionone, geraniol, and linalool. The composition and concentration of these aroma compounds are affected by fruit maturity and storage conditions. As fruit ripen, the concentration of aroma volatiles rapidly increases. This increase in volatile synthesis closely follows pigment formation both on and off the plant. In strawberry fruit, volatile concentration increases about 4-fold in the 24-h period required for fruit to ripen from 50% red to fully red on the plant. In storage, volatile composition is affected by storage temperature, duration, and atmosphere. Postharvest holding temperature and concentrations of O2 and CO2 can alter the quantity and composition of aroma volatiles. The effects of postharvest environments on volatile composition will be discussed.

2001 ◽  
Vol 11 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Charles F. Forney

Volatile compounds are responsible for the aroma and contribute to the flavor of fresh strawberries (Fragari×anannassa), red raspberries (Rubus idaeus), and blueberries (Vaccinium sp.). Strawberry aroma is composed predominately of esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The aroma of raspberries is composed of a mixture of ketones and terpenes. In highbush blueberry (Vaccinium corymbosum), aroma is dominated by aromatic hydrocarbons, esters, terpenes and long chain alcohols, while in lowbush blueberries (Vaccinium angustifolium), aroma is predominated by esters and alcohols. The composition and concentration of these aroma compounds are affected by cultivar, fruit maturity, and storage conditions. Volatile composition varies significantly both quantitatively and qualitatively among different cultivars of small fruit. As fruit ripen, the concentration of aroma volatiles rapidly increases closely following pigment formation. In storage, volatile concentrations continue to increase but composition depends on temperature and atmosphere composition. Many opportunities exist to improve the aroma volatile composition and the resulting flavor of small fruit reaching the consumer.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 554D-554
Author(s):  
Charles F. Forney ◽  
Willy Kalt

The aroma of fresh strawberries is composed of a mixture of volatile compounds with no single compound responsible for the characteristic strawberry aroma. Volatiles produced in strawberries are predominately esters, although alcohols, ketones, and aldehydes are also present in smaller quantities. The major volatiles contributing to aroma include ethyl butanoate, 2,5-dimethyl-4-hydroxy-3(2H)-furanone, ethyl hexanoate, methyl butanoate, linalool, and methyl hexanoate. There are qualitative and quantitative differences in volatile composition between cultivars. Headspace concentration of volatiles from 5 cultivars were 0.4, 1.7, 5.6, 5.8, and 14.3 mol·m–3 for `Honeoye', `Cavendish', `Micmac', `Kent', and `Annapolis', respectively. During fruit maturation on the plant, aroma volatile synthesis coincides with color formation, and continues to increase until the fruit is over-ripe. Volatile concentration increases about 4-fold in the 24-hr period required for fruit to ripen from 50% red to fully red on the plant. Volatile composition continues to change after harvest and is affected by storage temperature, atmosphere composition, and light. The concentration of ethyl esters increases while methyl esters remain constant in fruit held at 0°C, but, when fruit are warmed to 15°C, the reverse is true. Holding strawberries in 10 to 20 kPa of CO2 may increase concentrations of ethyl esters in the fruit. Light increases the production of volatiles in stored strawberries. Methods to control strawberry aroma will be discussed.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 374
Author(s):  
Teresa Szczęsna ◽  
Ewa Waś ◽  
Piotr Semkiw ◽  
Piotr Skubida ◽  
Katarzyna Jaśkiewicz ◽  
...  

The aim of this study was to determine the influence of storage temperature and time on physicochemical parameters of starch syrups recommended for the winter feeding of bee colonies. The studies included commercially available three starch syrups and an inverted saccharose syrup that were stored at different temperatures: ca. 20 °C, 10–14 °C, and ca. 4 °C. Physicochemical parameters of fresh syrups (immediately after purchase) and syrups after 3, 6, 9, 12, 15, 18, 21, and 24 months of storage at the abovementioned temperatures were measured. It was observed that the rate of unfavorable changes in chemical composition of starch syrups and the inverted saccharose syrup, mainly the changes in the 5-hydroxymethylfurfural (HMF) content, depended on the type of a syrup and storage conditions (temperature, time). Properties of tested starch syrups intended for winter feeding of bees stored at ca. 20 °C maintained unchanged for up to 6 months, whereas the same syrups stored at lower temperatures (10–14 °C) maintained unchanged physicochemical parameters for about 12 months. In higher temperatures, the HMF content increased. To date, the influence of this compound on bees has not been thoroughly investigated.


2009 ◽  
Vol 75 (23) ◽  
pp. 7409-7416 ◽  
Author(s):  
Ana Cláudia N. F. Spinelli ◽  
Anderson S. Sant'Ana ◽  
Salatir Rodrigues-Junior ◽  
Pilar R. Massaguer

ABSTRACT The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium's acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier.


2019 ◽  
Vol 62 (3) ◽  
pp. 661-671 ◽  
Author(s):  
Jia Wu ◽  
Xiangyang Lin ◽  
Shengnan Lin ◽  
Paul Chen ◽  
Guangwei Huang ◽  
...  

Abstract. The effects of packaging and storage conditions on the moisture content and instrumental and sensory textural properties of raw and salty light roasted (SLR) California almonds were studied under different storage conditions. The controlled combinations included low, medium, and high temperatures and low and high relative humidity (RH). Almond samples were packaged in cartons or polyethylene (PE) bags with and without vacuum. Both absorption and desorption of moisture by almonds were observed during storage and were dependent on the packaging and storage conditions. In general, gradual changes were observed for samples with PE and vacuum PE packaging in most of the storage conditions, while the samples packed in cartons showed more dramatic changes because these unprotected samples were more vulnerable to seasonal changes in humidity. The SLR almonds showed consistent moisture gains, while the raw almonds tended to lose moisture content in most of the storage conditions. This may be attributed to the low initial moisture content of the SLR samples. All raw samples packed in cartons became softer over time. The softening tended to be enhanced by high storage humidity and temperature. The raw almonds packaged in PE bags were firmer than those packed in cartons but also became softer over time. The firmness of the SLR samples was generally lower than that of raw samples, probably because roasting reduced the density and mechanical strength of the kernels. The firmness of PE packaged SLR samples increased in uncontrolled storage conditions and in higher storage temperature and humidity conditions but decreased slightly in lower temperature and humidity conditions. Vacuum packaging did not affect the firmness much. Using PE packaging and maintaining the RH below 50% and the temperature below 25°C are effective in stabilizing both raw and processed almonds. Keywords: Almond, Firmness, Nonpareil, Packaging, Relative humidity, Sensory, Storage, Temperature, Texture.


2014 ◽  
Vol 971-973 ◽  
pp. 262-265
Author(s):  
Lan Chen ◽  
Wei Dong Su ◽  
Xiao Bo Zhang ◽  
Xi Hong Li ◽  
Qi Li ◽  
...  

The experiment was carried to study a new storage disease of Lingwu long jujubes —surface dot piting and its incidence regularity .There was no abnormal fruit at room temperature ,while fruits storage at lower temperature started to appear concave spots on the seventh to tenth day. The size and distribution of spots are irregular ,and flesh browning and ligneous occurred at the lesion site. SEM results showed that relatived to the peel of the healthy fruit, the microstructure of the epidermal tissue of the lesion site was uneven and rough ,which showed large areas of uniform crack band, and the flesh tissue is messy, with varying degrees of wrinkles, looser organization, or seriously damaged. There was significant negative correlation between this new storage disease and storage temperature, whereas no correlation with gas composition, humidity or other storage conditions.


2011 ◽  
Vol 347-353 ◽  
pp. 3041-3045
Author(s):  
Hua Liu ◽  
Rong He ◽  
Qi Zhong Tan ◽  
Zhi Huang ◽  
Yan Peng Qi ◽  
...  

In order to research effects of storage conditions on physical properties of cut tobacco, storage temperature, storage humidity and storage time were studied by uniform design method in this paper. Intuitive analysis results showed that the best store process parameters such as storage temperature, humidity and time were 26°C, 61% and 32h respectively. Stepwise regression analysis results indicated storage process parameters affected physical properties of cut tobacco such as moisture content, filling power, proportion of long strands and its conversion extremely. And the regression equations were significant effective. But there was no efficacious regression equation between proportion of small strands of cut tobacco and storage process parameters.


2002 ◽  
Vol 127 (5) ◽  
pp. 836-842 ◽  
Author(s):  
M.C.N. Nunes ◽  
A.M.M.B. Morais ◽  
J.K. Brecht ◽  
S.A. Sargent

`Chandler' strawberries (Fragaria ×ananassa Duch.) harvested three-quarter colored or fully red were stored in air or a controlled atmosphere (CA) of 5% O2 + 15% CO2 at 4 or 10 °C to evaluate the influence of fruit maturity and storage temperature on the response to CA. Quality evaluations were made after 1 and 2 weeks in air or CA, and also after 1 and 2 weeks in air or CA plus 1 day in air at 20 °C. By 2 weeks, strawberries of both maturities stored in air at 10 °C were decayed, however, strawberries stored in CA at 4 or 10 °C or air at 4 °C had no decay even after 2 weeks plus 1 day at 20 °C. Three-quarter colored fruit stored in either air or CA remained firmer, lighter (higher L* value) and purer red (higher hue and chroma values) than fully red fruit, with the most pronounced effect being on CA-stored fruit at 4 °C. CA was more effective than air storage in maintaining initial anthocyanin and soluble solids contents (SSC) of three-quarter colored fruit and fruit stored at 10 °C. Strawberries harvested three-quarter colored maintained initial hue and chroma values for 2 weeks in CA at 4 °C, becoming fully red only when transferred to air at 20 °C. Although three-quarter colored fruit darkened and softened in 10 °C storage, the CA-stored fruit remained lighter colored and as firm as the at-harvest values of fully red fruit. After 1 or 2 weeks in CA at either 4 or 10 °C plus 1 day at 20 °C, three-quarter colored fruit also had similar SSC levels but lower total anthocyanin contents than the initial levels in fully red fruit. CA maintained better strawberry quality than air storage even at an above optimum storage temperature of 10 °C, but CA was more effective at the lower temperature of 4 °C. Three-quarter colored fruit responded better to CA than fully red fruit, maintaining better appearance, firmness, and color over 2 weeks storage, while achieving similar acidity and SSC with minimal decay development.


2003 ◽  
Vol 13 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Charles F. Forney

High-quality cranberry (Vaccinium macrocarpon) fruit are required to fulfil the growing markets for fresh fruit. Storage losses of fresh cranberries are primarily the result of decay and physiological breakdown. Maximizing quality and storage life of fresh cranberries starts in the field with good cultural practices. Proper fertility, pest management, pruning, and sanitation all contribute to the quality and longevity of the fruit. Mechanical damage in the form of bruising must be minimized during harvesting and postharvest handling, including storage, grading, and packaging. In addition, water-harvested fruit should be removed promptly from the bog water. Following harvest, fruit should be cooled quickly to an optimum storage temperature of between 2 and 5 °C (35.6 and 41.0 °F). The development of improved handling, refined storage conditions, and new postharvest treatments hold promise to extend the storage life of fresh cranberries.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 684-686 ◽  
Author(s):  
R.J. Bender ◽  
J.K. Brecht ◽  
E.A. Baldwin ◽  
T.M.M. Malundo

To determine the effects of fruit maturity, storage temperature, and controlled atmosphere (CA) on aroma volatiles, mature-green (MG) and tree-ripe (TR) `Tommy Atkins' mangoes (Mangifera indica L.) were stored for 21 days in air or in CA (5% O2 plus 10% or 25% CO2). The MG fruit were stored at 12 °C and the TR fruit at either 8 or 12 °C. Homogenized mesocarp tissue from fruit that had ripened for 2 days in air at 20 °C after the 21-day storage period was used for aroma volatile analysis. The TR mangoes produced much higher levels of all aroma volatiles except hexanal than did MG fruit. Both MG and TR mangoes stored in 25% CO2 tended to have lower terpene (especially p-cymene) and hexanal concentrations than did those stored in 10% CO2 and air-stored fruit. Acetaldehyde and ethanol levels tended to be higher in TR mangoes from 25% CO2 than in those from 10% CO2 or air storage, especially at 8 °C. Inhibition of volatile production by 25% CO2 was greater in MG than in TR mangoes, and at 8 °C compared to 12 °C for TR fruit. However, aroma volatile levels in TR mangoes from the 25% CO2 treatment were in all cases equal to or greater than those in MG fruit treatments. The results suggest that properly selected atmospheres, which prolong mango shelf life by slowing ripening processes, can allow TR mangoes to be stored or shipped without sacrificing their superior aroma quality.


Sign in / Sign up

Export Citation Format

Share Document