scholarly journals Transition from Conventional to Organic Farming Systems: II. Summary of Discussion Session and Recommendations for Future Research

2002 ◽  
Vol 12 (4) ◽  
pp. 611-612
Author(s):  
Gladis M. Zinati

A question/answer discussion session was conducted at the conclusion of the workshop “Pest Management During Transition to Organic Farming Systems”. The following categories were used to summarize the discussion: 1) questions and answers related to cultural and biological practices and their effects under various climatic conditions, 2) recommendations for pest management, and 3) future research needs. While many tactics are available, selecting and adopting the most suitable approach depends on soil conditions of the land, location, and the availability of the resources at affordable prices. Definitely, more research studies are needed on 1) weed seed banks under various cultural practices at different regions, 2) relationships between soil nutrients, and pest control, and 3) approaches to increase profitability of organic production during the transition period.

2002 ◽  
Vol 12 (4) ◽  
pp. 606-610 ◽  
Author(s):  
Gladis M. Zinati

Conventional agricultural systems increase per-area food production, but deplete natural resources and degrade both crop and environmental quality. Many of these concerns are addressed by sustainable agricultural systems, integrated pest management, biocontrol, and other alternative systems. Environmental and social concerns have escalated the need for alternative agricultural systems in the last decade. One alternative, the organic farming system, substitutes cultural and biological inputs for synthetically made fertilizers and chemicals for crop nutrition and pest management. Practices used for crop and pest management are similar during transition from conventional to organic farming systems, but produce is not certified to be organic during the transition period. During the transition from conventional to organic farming, growers may face pest control difficulties and lower yields when conventional practices are abandoned. The objectives of this paper are to 1) give an overview of the reasons for converting to organic farming and the challenges that growers face during the transition period, 2) outline some potential strategies for crop, soil, and pest management, and 3) list guidelines and recommendations for pest management during the transition to organic farming. Implementation of crop and pest management practices depends on geographical location, climate, available onsite resources, and history of the land. During transition, growers rely on cultural mechanisms and on organic and mineral sources to improve soil fertility, to build a population of natural enemies to suppress pest populations. Pest management practices during the transition period that reduce pest populations to economically manageable levels include crop rotation, cultivation, cover crops, mulches, crop diversification, resistant varieties, and insect traps. These practices also enrich the soil biota and increase crop yields before produce is certified organically grown.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aitana Ares ◽  
Joana Costa ◽  
Carolina Joaquim ◽  
Duarte Pintado ◽  
Daniela Santos ◽  
...  

Maize is one of the most important crops worldwide and is the number one arable crop in Portugal. A transition from the conventional farming system to organic agriculture requires optimization of cultivars and management, the interaction of plant–soil rhizosphere microbiota being pivotal. The objectives of this study were to unravel the effect of population genotype and farming system on microbial communities in the rhizosphere of maize. Rhizosphere soil samples of two open-pollinated maize populations (“SinPre” and “Pigarro”) cultivated under conventional and organic farming systems were taken during flowering and analyzed by next-generation sequencing (NGS). Phenological data were collected from the replicated field trial. A total of 266 fungi and 317 bacteria genera were identified in “SinPre” and “Pigarro” populations, of which 186 (69.9%) and 277 (87.4%) were shared among them. The microbiota of “Pigarro” showed a significant higher (P < 0.05) average abundance than the microbiota of “SinPre.” The farming system had a statistically significant impact (P < 0.05) on the soil rhizosphere microbiota, and several fungal and bacterial taxa were found to be farming system-specific. The rhizosphere microbiota diversity in the organic farming system was higher than that in the conventional system for both varieties. The presence of arbuscular mycorrhizae (Glomeromycota) was mainly detected in the microbiota of the “SinPre” population under the organic farming systems and very rare under conventional systems. A detailed metagenome function prediction was performed. At the fungal level, pathotroph–saprotroph and pathotroph–symbiotroph lifestyles were modified by the farming system. For bacterial microbiota, the main functions altered by the farming system were membrane transport, transcription, translation, cell motility, and signal transduction. This study allowed identifying groups of microorganisms known for their role as plant growth-promoting rhizobacteria (PGPR) and with the capacity to improve crop tolerance for stress conditions, allowing to minimize the use of synthetic fertilizers and pesticides. Arbuscular mycorrhizae (phyla Glomeromycota) were among the most important functional groups in the fungal microbiota and Achromobacter, Burkholderia, Erwinia, Lysinibacillus, Paenibacillus, Pseudomonas, and Stenotrophomonas in the bacterial microbiota. In this perspective, the potential role of these microorganisms will be explored in future research.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1072C-1072
Author(s):  
Kristen Harper ◽  
Curt R. Rom

Since the passage of the Organic Foods Production Act in 1990, certified organic produce has begun to make a large impact on national markets. However, USDA statistics indicate that many states in the southern region have considerably reduced certified organic acreage when compared to other regions in the United States. The absence of organic acreage may perhaps originate with a lack of training and educational materials provided to producers due to unanticipated growth of organic markets. A thorough review of all Arkansas Cooperative Extension Service (ACES) materials, such as bulletins, publications, and workshops over the past 10 years, would reveal what information has been provided to producers on certified organic production. This review of ACES materials defines the existing groundwork on which ACES could construct future organic publications and outreach programs in order to sustain and stimulate organic farming within the state.


2000 ◽  
Vol 10 (4) ◽  
pp. 692-698 ◽  
Author(s):  
James Leary ◽  
Joe DeFrank

An important aspect of organic farming is to minimize the detrimental impact of human intervention to the surrounding environment by adopting a natural protocol in system management. Traditionally, organic farming has focused on the elimination of synthetic fertilizers and pesticides and a reliance on biological cycles that contribute to improving soil health in terms of fertility and pest management. Organic production systems are ecologically and economically sustainable when practices designed to build soil organic matter, fertility, and structure also mitigate soil erosion and nutrient runoff. We found no research conducted under traditional organic farming conditions, comparing bareground monoculture systems to systems incorporating the use of living mulches. We will be focusing on living mulch studies conducted under conventional methodology that can be extrapolated to beneficial uses in an organic system. This article discusses how organic farmers can use living mulches to reduce erosion, runoff, and leaching and also demonstrate the potential of living mulch systems as comprehensive integrated pest management plans that allow for an overall reduction in pesticide applications. The pesticide reducing potential of the living mulch system is examined to gain insight on application within organic agriculture.


Author(s):  
Jaroslav Jánský ◽  
Iva Živělová ◽  
Jan Křen ◽  
Soňa Valtýniová

The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking) can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale). Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1080B-1080
Author(s):  
Annette L. Wszelaki ◽  
Bryan Brunner

While much research has been conducted in organic farming, little has focused on tropical systems. Tropical, versus temperate, systems present additional challenges for organic producers, including differences in soils, temperature, daylength, rainfall, and humidity. Pest management in tropical organic systems can be particularly demanding due to the year-round pest pressure and optimal environment for pest proliferation. Weed management is essential for the production of high-quality watermelons, but can be difficult when herbicides are not permitted. Weeds also serve as a source of inoculum for disease organisms and a habitat for insects, both beneficial and detrimental. Many products have been advertised for pest control in organic farming systems, most of which have not been adequately evaluated in independent, replicated trials. Here we investigated alternatives to pesticides for the control of weeds, insects, and diseases in `Crimson Sweet' watermelons. A split plot on a RCBD with four replications per treatment was used, with weed treatment (± paper-grass mulch) as the main plot and 12 insect and disease control alternatives as subplots. The alternatives for insect and disease control included traditional copper-based fungicides, biological control agents, potassium bicarbonate, hydrogen dioxide, milk, and commercial formulations of essential oils. Weed abundance (percentage cover), disease severity (percentage disease), and insect damage (percentage foliar damage) were evaluated weekly using a modified Horsfall-Barratt scale. Yield and quality were measured at harvest on five plants from each replication. While none of the products should be relied upon as the sole means of managing pests, those with efficacy could be integrated into organic management programs.


Author(s):  
Deanna Lloyd ◽  
Garry Stephenson

This exploratory study investigates perceptions of the transition to certified organic production among farmers in the U.S. state of Oregon who were actively transitioning all or part of their operation to certified organic production. It examines the influence of farmer experience with organic farming systems on motivations and obstacles to transition to certified organic farming. The analysis creates and compares three categories of farmers based on their total years of farming experience and years of farming using organic methods—Experienced Organic Farmers, Beginning Organic Farmers, and Experienced Farmers Beginning Organic—and provides insights into the economic and ideological motivations for transitioning to certified organic, as well as the economic, production, and marketing obstacles inherent to certified organic transition.


2000 ◽  
Vol 10 (4) ◽  
pp. 675-681 ◽  
Author(s):  
N.G. Creamer ◽  
K.R. Baldwin ◽  
F.J. Louws

More than 50 agents participated in a series of workshops that were offered as in-service training and as a graduate level North Carolina State University (NCSU) course worth four credits. The Organic Unit at the Center for Environmental Farming Systems (CEFS), a 100-acre (40-ha) facility dedicated to research and education in organic farming systems, served as a home base for training activities. These training activities consisted of lectures, hands-on demonstrations, group discussions, field trips, and class exercises. Two unique features of the workshops were the interdisciplinary, team teaching approach and the emphasis on integration of information about interactions among production practices. This well-received, successful training program will serve as a model for future extension training. A training manual, slide sets, extension publications, and an organic farming web site are being created to provide agents with the resource materials they need to conduct county-based educational programming in organic production systems and enterprises. The model for extension training presented in this report is an effective means for engaging county agents in continuing education and professional development. Interdisciplinary teaching teams allow for a full, integrated treatment of subject matter and present a whole systems perspective to agents. Regularly scheduled, intensive sessions that accommodate busy calendars and utilize time efficiently provide a strong incentive for regular attendance. Awarding graduate level university credit hours for completion of required course work attracts and retains prospective student and agents. Encouragement of active participation by agents through hands-on field activities, open discussion of issues that impact agricultural and rural life, and field trips to view concepts presented in a real world context ensure that educational goals are fulfilled and that active learning takes place. This model should be used in future extension training programs.


2011 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Keiko Ichiyama ◽  
Eri Sugiura ◽  
...  

2006 ◽  
Vol 18 ◽  
pp. 301-308 ◽  
Author(s):  
E.A. Stockdale ◽  
M.A. Shepherd ◽  
S. Fortune ◽  
S.P. Cuttle

Sign in / Sign up

Export Citation Format

Share Document