scholarly journals Mechanical Harvesting Capacity in Sweet Orange Is Increased with an Abscission Agent

2005 ◽  
Vol 15 (4) ◽  
pp. 758-765 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Richard S. Buker ◽  
Fritz M. Roka

An abscission agent [5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP)] was applied to `Hamlin' and `Valencia' orange (Citrus sinensis) trees at concentrations ranging from 0 to 500 ppm in a volume of 300 gal/acre. Four days after application, fruit were mechanically harvested with either a trunk shake-and-catch or a continuous canopy shake-and-catch system commercially used in Florida. Harvesting conditions were varied by limiting the actual trunk shake time of the trunk shaker to 2, 4, or 7 seconds, or by altering the ground speed of the canopy shaker (1.0, 1.5, or 2.0 mph). In general, increasing duration of shake and the application of CMNP increased percent mature fruit removal and decreased the amount of fruit remaining in the tree. Increasing CMNP concentration decreased fruit detachment force but increased post-spray fruit drop. Comparison of short duration shake times in CMNP-applied trees with trees harvested at longer durations either sprayed or not sprayed with CMNP indicated no significant difference in percent mature fruit removal. The results demonstrate that CMNP application increases harvesting capacity of trunk and canopy shakers by reducing time necessary to harvest each tree while maintaining high percent mature fruit removal.

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 660-663 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Fritz M. Roka ◽  
Kuo-Tan Li ◽  
Luis Pozo ◽  
Richard S. Buker

An abscission agent (5-chloro-3-methyl-4-nitro-1H-pyrazole [CMNP]) at 300 mg·L–1 in a volume of 2810 L·ha–1 was applied to Valencia orange trees [Citrus sinensis (L.) Osb.] on 22 May 2004. At this time, immature and mature fruit were present on the tree simultaneously. Three days after application, fruit were mechanically harvested using a trunk-shake-and-catch system. The power to the shaker head was operated at full- or half-throttle (FT or HT, respectively), and the duration of trunk shaking was 2 seconds at FT or 4 seconds at FT and HT. Mature fruit removal percentage and number of immature fruit removed, and fruitlet weight and diameter were determined. Mature fruit removal percentage with 2 seconds at FT or 4 seconds at FT harvesting ±CMNP, or 4 seconds at HT + CMNP was not significantly different and ranged between 89% to 97%. Harvesting at 4 seconds HT without CMNP removed significantly less mature fruit than any treatment. CMNP did not affect immature fruit removal by the trunk shaker. Harvesting at 4 seconds at HT removed significantly less immature fruit than 2 seconds at FT or 4 seconds at FT. No significant difference in fruitlet weight or diameter was measured between any trunk shaker harvest operation and CMNP treatment. Trunk shaking frequency was estimated to be 4.8 and 8.0 Hz at HT and FT, respectively. Yield in 2005 was determined on the same trees used for harvest treatments in 2004. CMNP did not impact yield. No significant difference in yield was seen between the hand-picked control and 4 seconds at HT, whereas yield in the remaining treatments was lower. The results demonstrate that CMNP application combined with low frequency trunk shaker harvesting can achieve high percentage of mature fruit removal with no significant impact on return yield of the following crop.


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1079-1083 ◽  
Author(s):  
Robert C. Ebel ◽  
Jacqueline K. Burns ◽  
Kelly T. Morgan ◽  
Fritz Roka

This study was conducted to determine the relationship of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) concentration and canopy shaker frequency on fruit detachment force, pre-harvest fruit drop, and mechanical harvesting fruit removal of ‘Hamlin’ and ‘Valencia’ sweet orange cultivars. CMNP was applied at 0, 200, and 300 mg·L−1 in a carrier volume of 2806 L·ha−1. Four days after CMNP application, fruit were harvested with a canopy shaker that was operated at 3.0, 3.7, and 4.3 Hz at a tractor speed of 1.6 km·h−1. The experiment was repeated 3× for ‘Hamlin’ (December, early January, and late January) and twice for ‘Valencia’ (March and April) during the 2008–2009 harvest season. Fruit detachment force was reduced by at least 50% for all CMNP-treated trees compared with the untreated controls at the time of harvest and was lower for 300 mg·L−1 than 200 mg·L−1 on three of the five dates tested. Pre-harvest fruit drop evaluated immediately before mechanical harvesting was higher for all CMNP-treated ‘Hamlin’ than untreated controls at all harvest dates, whereas 300 mg·L−1 application resulted in higher pre-harvest fruit drop in ‘Valencia’ when compared with 200 mg·L−1 or the untreated controls on both application dates. CMNP-induced fruit drop was higher in ‘Hamlin’ than ‘Valencia’. CMNP had a greater effect on fruit removal at lower canopy shaker frequencies. The interaction of total fruit weight removed was not significant on any date as a result of variability among trees in the study. These data indicate that the amount of loosening by CMNP was concentration-dependent and facilitated removal, especially with lower canopy shaker frequencies. Development of viable commercial practices should use the percent of the total crop harvested and not the actual weight of fruit removed in determining efficacy of CMNP and harvest efficiency of the mechanical harvesters.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 535C-535
Author(s):  
J.K. Burns ◽  
U. Hartmond ◽  
R. Yuan ◽  
W.J. Kender

Methyl jasmonate (Me-Ja) is a naturally occurring ubiquitous compound in plants. Me-Ja is considered to be a putative plant hormone because of its effect on plant processes such as senescence, germination, tuber formation, signal transduction, ethylene production, and abscission at low exogenous concentrations. We applied Me-Ja to fruit or whole trees of `Hamlin' or `Valencia' orange to determine the potential of this compound as a mature fruit abscission agent. Me-Ja (0, 1, 5, 10, or 20 mM in 0.1% Kinetic adjuvant) was applied to whole trees with a handgun or boom sprayer rates of 4850 and 1790 L·ha–1, respectively. Alternatively, tree fruit were dipped in Me-Ja solutions. Fruit drop, leaf drop and ethylene production in both fruit and leaves and fruit detachment force in fruit were monitored at various times up to 2 weeks after application. Me-Ja treatment resulted in increased ethylene production in fruit and leaves 1 to 2 days after application. Fruit detachment force significantly declined 6 to 10 days after application followed by significant fruit drop. Applications of Me-Ja >10 mM resulted in an unacceptable amount of canopy defoliation. The results suggest that Me-Ja has potential as an abscission agent for citrus. Future work will focus on improving uniformity of application and response.


2019 ◽  
Vol 109 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Fabrício E. Lanza ◽  
Weber Marti ◽  
Geraldo J. Silva ◽  
Franklin Behlau

During the development of a citrus fruit, many cycles of infection by Xanthomonas citri subsp. citri may occur leading to the development of a range of characteristics of citrus canker lesions scattered across the fruit surface. This study aimed to determine whether the size of the lesions, their distance from the peduncle, and the number and time of appearance of the lesions on fruit of sweet orange were associated with premature fruit drop. A multiple linear regression analysis revealed a negative relationship between the fruit detachment force and the lesion diameter, the proximity of the nearest lesion to the peduncle and the number of lesions. A survival analysis demonstrated that these characteristics significantly influenced the probability and the time that a cankered fruit remained attached to the tree. More than 90% of dropped fruit had large lesions (>5 mm) but not all fruit with large lesions dropped before harvest. Approximately 50% of the harvested fruit had lesions >5 mm. On the harvested fruit remaining on the tree, although large, the lesions had a smaller diameter, were located farther from the peduncle, and were less numerous than those observed on dropped fruit. Small canker lesions neither reduced the detachment force nor the survival of fruit in the tree. The earlier a fruit expressed canker symptoms, the higher the probability the fruit developed large lesions near the peduncle and/or developed lesions in greater numbers. This study provides a better understanding on the relationship between the time of appearance of lesions of citrus canker on fruit and premature fruit drop. This information defines the critical period for fruit protection and may be used to improve disease management.


2010 ◽  
Vol 135 (5) ◽  
pp. 456-464 ◽  
Author(s):  
Karthik-Joseph John-Karuppiah ◽  
Jacqueline K. Burns

When applying abscission agents to tree fruit to facilitate harvest, it is desirable to loosen fruit and not leaves or other organs, but mechanisms controlling leaf and fruit drop are not fully understood. The effect of 450 μL·L−1 ethephon (ethylene-releasing agent) alone or in combination with 1-methylcyclopropene [1-MCP (ethylene perception inhibitor)] on leaf and mature fruit abscission of ‘Valencia’ sweet orange (Citrus sinensis) was studied. Leaf abscission increased and fruit detachment force (FDF) decreased significantly especially 4 days after ethephon treatment. Leaf drop rose to over 80% 7 days after application, whereas FDF was only 30% less than untreated control fruit. When 1-MCP was combined with ethephon and applied to ‘Valencia’ sweet orange canopies, leaf abscission was greatly reduced, but reduction in FDF proceeded unabated. We hypothesized that differential response of ‘Valencia’ sweet orange fruit and leaves to 1-MCP was correlated with expression of ethylene biosynthetic and signaling genes and their downstream action. Partial or full-length nucleotide sequences were obtained for ‘Valencia’ sweet orange homologs of 1-amino-cyclopropane-1-carboxylate synthase-1 (CsACS1), 2 (CsACS2), 1-amino-cyclopropane-1-carboxylate oxidase (CsACO), ethylene response sensor-1 (CsERS1), ethylene response-1 (CsETR1), 2 (CsETR2), 3 (CsETR3), constitutive triple response-1 (CsCTR1), ethylene insensitive-2 (CsEIN2), and ethylene insensitive 3-like-1 (CsEIL1) and 2 (CsEIL2). Ethephon application increased expression of biosynthesis genes CsACS1 and CsACO and receptors CsERS1 and CsETR2 in the abscission zones of leaves and mature fruit. Ethephon-induced increase in gene expression was completely suppressed by 1-MCP application in all but CsACS1 and CsACO in fruit abscission zones. Although gene expression was suppressed initially, CsACS1 and CsACO expression in fruit abscission zones treated with 1-MCP in the presence or absence of ethephon increased over the 7-day measurement period, suggesting that CsACS1 and CsACO expression were negatively regulated by basal ethylene production in this tissue. However, 1-MCP treatment alone did not loosen fruit, indicating that CsACS1 and CsACO played minor roles in fruit abscission. To determine if the difference in ethylene sensitivity was the basis of differential response to ethylene within the same organ, potted ‘Valencia’ sweet orange plants were treated with ethylene, and rates of blade and petiole drop and detachment forces at the laminar and petiolar abscission zones were studied. Although leaf blades abscised earlier than petioles, the force of detachment was similar, indicating no differences in ethylene sensitivity. Overall, the most significant difference between fruit and leaf abscission zones was seen in the expression of CsACS1 and CsACO genes, but the expression pattern was poorly correlated with abscission.


1999 ◽  
Vol 9 (3) ◽  
pp. 412-416 ◽  
Author(s):  
Walter J. Kender ◽  
Ulrich Hartmond ◽  
Jacqueline K. Burns

Fruit of 11 citrus cultivars were evaluated for their response to the experimental abscission material metsulfuron-methyl at 2 mg·L-1 (ppm) active ingredient as an aid to mechanical or hand harvest. Cultivars evaluated included `Ambersweet', `Glen Navel', `Hamlin', and `Valencia' oranges [Citrus sinensis (L.) Osb.], `Robinson' tangerine (Clementine × Orlando, C. reticulata Blanco), `Sunburst' tangerine [`Robinson' × `Osceola', C. reticulata × (C. paradisi Macf. × C. reticulata)], `Murcott' and `Temple' tangor (C. reticulata × C. sinensis), `Orlando' tangelo (C. reticulata × C. paradisi), `Ray Ruby', and `Marsh' grapefruit (C. paradisi). Six of the 11 cultivars were effectively loosened by sprays of metsulfuron-methyl (`Hamlin', `Valencia', `Orlando', `Murcott', `Temple', and `Ray Ruby'). Addition of an adjuvant (Kinetic, 0.125%) was necessary for abscission activity in fruit and leaves. Trees sprayed with metsulfuron-methyl in combination with an adjuvant had higher percent cumulative fruit drop, higher internal ethylene, and lower fruit detachment forces (FDF) than trees sprayed with metsulfuron-methyl alone. `Sunburst' tangerine responded poorly to the abscission material in the presence or absence of Kinetic. Leaf loss was greatest in trees sprayed with metsulfuron-methyl and adjuvant, intermediate in trees sprayed with metsulfuron-methyl alone, and least in control trees. Twig dieback was observed in trees of `Valencia' orange and `Marsh' grapefruit sprayed with metsulfuron-methyl. The peel of some cultivars had irregular coloration and developed pitted areas after harvest. Although metsulfuron-methyl is an effective abscission agent for mature citrus fruit, further work is needed to more accurately define conditions for its safe and dependable use.


HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 226-229 ◽  
Author(s):  
U. Hartmond ◽  
J.D. Whitney ◽  
J.K. Burns ◽  
W.J. Kender

Two field studies were conducted to evaluate the effect of metsulfuron-methyl and 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole) on abscission of `Valencia' orange [Citrus sinensis (L.) Osbeck] during the 3-month harvest season. Solutions of metsulfuron-methyl at 0.5, 1, and 2 mg·L-1 active ingredient (a.i.) were applied at 10-day intervals beginning on 13 Feb. and ending 18 May 1998. Early in the harvest season, 1 or 2 mg·L-1 metsulfuron-methyl significantly reduced fruit detachment force (FDF) 14 days after application. Metsulfuron-methyl was less effective during a 4- to 6-week period following bloom (“less-responsive period”). After this period, metsulfuron-methyl regained the ability to loosen fruit. Applications of 2 mg·L-1 a.i. were more effective than 1 mg·L-1 in reducing FDF and causing leaf drop, but 0.5 mg·L-1 a.i. had little or no effect on FDF. Flowers and leaflets on developing shoots and young fruit completely abscised with 1 and 2 mg·L-1 a.i. Defoliation and twig dieback was extensive at all concentrations and spray dates, eliminating metsulfuron-methyl as a commercially viable abscission agent for citrus. In a separate experiment CMN-pyrazole at 50 and 100 mg·L-1 a.i. and metsulfuronmethyl at 0.5 mg·L-1 a.i. were applied to `Valencia' trees to determine fruit removal with a trunk shake and catch harvesting system. Application of both abscission materials before and after the “less-responsive period” resulted in a 10% to 12% increase in fruit removal when compared to control trees. Less than a 35% reduction in FDF was sufficient to significantly increase fruit removal. Only 100 mg·L-1 a.i. CMN-pyrazole significantly increased fruit removal when applied during the “less-responsive period.” Chemical names used: Methyl-2-(((((4-Methoxy-6-Methyl-1,3,5-Triazin-2-yl)-Amino)Carbonyl) Amino)Sulfonyl)Benzene (Metsulfuron-methyl); 5-Chloro-3-methyl-4-nitro-1-H-pyrazole (CMN-pyrazole).


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 851-857
Author(s):  
Lisa Tang ◽  
Sukhdeep Singh ◽  
Tripti Vashisth

In the past decade, FL citrus industry has been struck by Huanglongbing (HLB), a disease caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). Besides tree decline, HLB causes a sharp increase in mature fruit drop before harvest, leading to a substantial reduction in citrus production. The aim of the study was to provide insights in HLB-associated mature fruit drop. For HLB-affected ‘Valencia’ and ‘Hamlin’ sweet orange (Citrus sinensis), trees exhibiting severe symptoms (“severe trees”) had a significantly higher rate of mature fruit drop compared with mildly symptomatic ones (“mild trees”). Interestingly, dropped fruit were smaller than those still attached to tree branches regardless of the symptom levels of trees; overall, fruit of severe trees were smaller than mild trees. The result suggests a negative effect of HLB on fruit growth that may lead to a high incidence to drop subsequently at maturity. This possibility is further supported by the difference in immature fruit size as early as 2 months after bloom between severe and mild trees. Although HLB-triggered phloem plugging due to callose deposition in citrus leaves, which results in disrupted carbohydrate transport, has been documented in literature, the results of the histological analysis demonstrated no consistent pattern of callose deposition in the mature fruit pedicel in relation to the drop incidence. Additionally, sugar concentration in juice was not significantly different between dropped and attached fruit, providing evidence that carbohydrate shortage is not the case for dropped fruit and thus not the predominant cause of HLB-associated mature fruit drop. Notably, the midday water potential was significantly lower for severe than mild trees during the preharvest period (2 weeks before harvest of the current crop) in late March, which was also the second week after full bloom of return flowering. This suggests that altered tree water status due to HLB might limit fruit growth during the initial stage of fruit development (immediately after flowering) and/or increase the incidence of mature fruit abscission, leading to elevated preharvest fruit drop. Together, the results suggest that in the presence of HLB, strategies to increase fruit size and minimize additional stresses (especially drought) for the trees may improve mature fruit retention.


2003 ◽  
Vol 128 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Luis V. Pozo ◽  
Covadonga R. Arias ◽  
Brandon Hockema ◽  
Vidhya Rangaswamy ◽  
...  

Coronatine is a polyketide phytotoxin produced by several plant pathogenic Pseudomonas spp. The effect of coronatine on abscission in Citrus sinensis L. Osbeck `Hamlin' and `Valencia' orange fruit, leaves, fruitlets, and flowers was determined. Coronatine at 200 mg·L-1 significantly reduced fruit detachment force of mature fruit, and did not cause fruitlet or flower loss in `Valencia'. Cumulative leaf loss was 18% with coronatine treatment. Coronafacic acid or coronamic acid, precursors to coronatine in Pseudomonas syringae, did not cause mature fruit abscission. Ethylene production in mature fruit and leaves was stimulated by coronatine treatment, and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 12-oxo-phytodienoate reductase (12-oxo-PDAR) gene expression was upregulated. A slight chlorosis developed in the canopy of whole trees sprayed with coronatine, and chlorophyll content was reduced relative to adjuvant-treated controls. Leaves formed after coronatine application were not chlorotic and had chlorophyll contents similar to controls. Comparison of coronatine to the abscission compounds methyl jasmonate, 5-chloro-3-methyl-4-nitro-pyrazole and ethephon indicated differences in ethylene production and ACO and 12-oxo-PDAR gene expression between treatments. Leaf loss, chlorophyll reduction and low coronatine yield during fermentation must be overcome for coronatine to be seriously considered as an abscission material for citrus.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 497e-497
Author(s):  
Lili Zhou ◽  
David Christopher ◽  
Robert E. Paull

The source size and sink strength were modified by continual defoliation and fruit removal in `Sunset' papaya. Flower and fruit set, mature fruit mass, and TSS was recorded weekly. Fruit at four different stages of development were harvested at the end of the experiment. Fruit mass, respiration, sugar content, and sucrose phosphate synthase (SPS), sucrose synthase (SS), and invertase enzyme activities were compared. Continual defoliation resulted in lower new fruit set (25% of control), smaller fruit size (77% of control), and lower TSS (85% of control) in the 24-week experimental period. In contrast, there were 52% and 100% more new fruit when fruit were removed than in the control within the first 8 weeks and 24 weeks, respectively. Larger fruit size, earlier fruit development, lower respiration, and higher sugar contents were observed when fruit were removed at 140, 154, and 175 days from anthesis. No significant difference was found in TSS level in the mature fruit compared to the control. Fruit removal plus defoliation gave the same number and mass of new fruit as the control and slightly lower TSS in mature fruit than in the control. Fruit sugar was higher with increased fruit invertase activity and fruit age. Data confirmed that source–sink balance was critical for fruit set, development, and sugar accumulation in papaya.


Sign in / Sign up

Export Citation Format

Share Document