scholarly journals Fruit Cracking in Tomato

1992 ◽  
Vol 2 (2) ◽  
pp. 216-223 ◽  
Author(s):  
M.M. Peet

The environmental and physiological causes of cracking or splitting of soft fruits and citrus as they ripen are not well understood. This paper explores factors contributing to radial cracking in tomatoes, gives suggestions for prevention of cracking, and suggests directions for future research. Fruit cracking occurs when there is a rapid net influx of water and solutes into the fruit at the same time that ripening or other factors reduce the strength and elasticity of the tomato skin. In the field, high soil moisture tensions suddenly lowered by irrigation or rains are the most frequent cause of fruit cracking. Low soil moisture tensions reduce the tensile strength of the skin and increase root pressure. In addition, during rain or overhead irrigation, water penetrates into the fruit through minute cracks or through the corky tissue around the stem scar. Increases in fruit temperature raise gas and hydrostatic pressures of the pulp on the skin, resulting in immediate cracking in ripe fruit or delayed cracking in green fruit. The delayed cracking occurs later in the ripening process when minute cracks expand to become visible. High light intensity may have a role in increasing cracking apart from its association with high temperatures. Under high light conditions, fruit soluble solids and fruit growth rates are higher. Both of these factors are sometimes associated with increased cracking. Anatomical characteristics of crack-susceptible cultivars are: 1) large fruit size, 2) low skin tensile strength and/or low skin extensibility at the turning to the pink stage of ripeness, 3) thin skin, 4) thin pericarp, 5) shallow cutin penetration, 6) few fruits per plant, and 7) fruit not shaded by foliage. Following cultural practices that result in uniform and relatively slow fruit growth offers some protection against fruit cracking. These practices include maintenance of constant soil moisture and good Ca nutrition, along with keeping irrigation on the low side. Cultural practices that reduce diurnal fruit temperature changes also may reduce cracking. In the field, these practices include maintaining vegetative cover. Greenhouse growers should maintain minimal day/night temperature differences and increase temperatures gradually from nighttime to daytime levels. For both field and greenhouse tomato growers, harvesting before the pink stage of ripeness and selection of crack-resistant cultivars probably offers the best protection against cracking. Areas for future research include developing environmental models to predict cracking and exploring the use of Ca and gibberellic acid (GA) sprays to prevent cracking.

1996 ◽  
Vol 6 (1) ◽  
pp. 21-24 ◽  
Author(s):  
Wade J. Sperry ◽  
Jeanine M. Davis ◽  
Douglas C. Sanders

Two crack-resistant and two crack-susceptible fresh-market tomato (Lycopersicon esculentum Mill.) cultivars were evaluated at varied soil moisture levels for physiological fruit defects and yield. Cultural practices recommended for staked-tomato production in North Carolina with raised beds, black polyethylene mulch, and drip irrigation were used. Soil moisture levels of less than −15.0, −30 to −40, and greater than −70 kPa were maintained and monitored using daily tensiometer readings. Soil moisture level had no effect on fruit cracking, blossom-end rot, zippers, or yield. However, there-were large differences among cultivars for fruit defects and total and marketable yields.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 513c-513 ◽  
Author(s):  
Martin J. Bukovac ◽  
Jerome Hull ◽  
John C. Neilsen ◽  
Michael Schroeder ◽  
Georg Noga

NAA is used extensively for fruit thinning of apples to increase fruit size and to promote return bloom. In some cultivars, even if thinning is achieved, fruit size at harvest may be less than expected based on crop load. CPPU, N-(2-chloro-4-pyridinyl)-N.-phenylurea, has been shown to increase fruit growth in apples, grapes, and kiwi. We evaluated combinations of NAA and CPPU on thinning, fruit growth and return bloom in Redchief `Delicious', `Elstar', and `Gloster'. CPPU was applied at 5 mgμL–1 (based on 0 to 10 mgμL–1 response curve) in combination with 15 mgμL–1 NAA as high-volume sprays at 7 to 10 mm KFD. Yield and fruit size distribution (on total yield) were used as index of response. In `Delicious', CPPU (3-year study) increased % large (70 mm+) fruit, but in the presence of NAA % large fruit was reduced 2 of the 3 years. CPPU did not induce significant thinning. There were no significant effects on color or soluble solids; firmness was increased slightly and seed number reduced. The L/D ratio was increased and uneven lobe and carpel development was common. CPPU had no significant effect on return bloom in presence or absence of NAA, but NAA increased bloom in both the presence and absence of CPPU. With `Elstar' (2-year study) there was no significant thinning with either chemical, but CPPU increased mean fruit size and % large (70–80 mm) fruit over nonthinned, but not significantly greater than NAA alone. There were no significant differences in firmness, color, soluble solids or seed number. NAA + CPPU did not inhibit fruit growth or cause excessive uneven carpel development. Frost damage reduced crop load in `Gloster' where results were similar to `Elstar' except seed number was reduced by the NAA + CPPU combination.


2010 ◽  
Vol 21 (3) ◽  
pp. 312-352 ◽  
Author(s):  
Jon C. Lohse

The earliest Lowland Maya are commonly recognized by permanent architecture and the appearance of pottery. However, when other lines of evidence are considered, strong continuities with late Archaic populations can be seen. Reconciling these views relies on more than simply gathering more data. It is also necessary to consider the effect of decades of scholarship that defines the precolumbian Maya as “civilization” rather than considering the historical contexts of important transitions, such as the one that culminated with sedentism, the adoption of new technologies, and participation in long-distance exchange. The Archaic-to-Preclassic transition was relatively brief and largely obscured by the practices of establishing permanent dwellings. Nevertheless, this period must have been extremely dynamic and marked by significant cultural change, making it important to researchers interested in early Mesoamerica. Using three lines of evidence—subsistence, economy and technology, and stratigraphically controlled radiocarbon data—this article argues that the Lowland Maya had their cultural origins at least in the late Archaic and that the case for pottery before ca. 1000 B.C. remains uncertain. Future research is needed to determine precisely how far back in time certain cultural practices that characterize Preclassic and Classic Maya society can be documented.


1966 ◽  
Vol 46 (6) ◽  
pp. 653-660 ◽  
Author(s):  
H. A. Friesen ◽  
D. A. Dew

Moisture and temperature differentially affected the phytotoxicity of four herbicides to tartary buckwheat, Fagopyrum tataricum (L.) Gaertn., the test plant. The activity of the systemic herbicides 2,4-D, dicamba, and picloram was greatest when conditions of soil moisture and air temperature tended toward optimum growth of the buckwheat. When moisture limited growth the phytotoxicity of these three herbicides was significantly less. Reducing the temperature from the optimum 24°–13 °C to 18°–7 °C did not significantly reduce the activity of these herbicides. Conversely, the phytotoxicity of the contact herbicide bromoxynil was significantly greater at the low rather than the high temperature program. This activity was accentuated when moisture was also made limiting but its effect was less pronounced. High light intensity tended to result in abnormal buckwheat growth and reduced activity of the herbicides.


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


Plant Disease ◽  
2002 ◽  
Vol 86 (7) ◽  
pp. 815-815 ◽  
Author(s):  
B. A. Latorre ◽  
S. C. Viertel ◽  
I. Spadaro

Severe outbreaks of bunch rots (BR) have occurred recently during harvest of table grapes (Vitis vinifera L.) in Chile. Previously, BR was almost exclusively associated with Botrytis cinerea Pers.:Fr. (2,3); however, in 2000 to 2002, BR symptoms were associated with black molds and possibly nonfilamentous yeasts and bacteria. Cvs. Thompson Seedless, Flame Seedless, Ruby Seedless, and Red Globe were severely affected. Symptoms start at the pedicels as soft, watery rots that partially or completely decay infected berries. Longitudinal cracks are produced, a black mold usually develops along the crack fissures, and the skin of the berry turns light gray. Isolations on potato dextrose agar acidified with 1 N lactic acid (APDA) at 0.5 ml/liter, consistently yielded Rhizopus stolonifer (Ehrenb. ex Fr.) Vuillemin and Aspergillus niger Tiegh. R. stolonifer on APDA produced a white-to-gray aerial and nonseptate mycelium, black and globose sporangia with an elliptical collumela, one-celled, globose to oval, striated, almost hyaline sporangiospores, rhizoids, and stolons. A. niger produced septate mycelium. Single-celled, black, rough walled, globose conidia developed on short chains on the second phialides at the tip of globose, upright conidiophores. Mature (soluble solids >16%) detached berries of cv. Thompson Seedless were inoculated with sporangiospores (≈107 spores per ml) of R. stolonifer isolates RS6, RS52, RS73, and RS79 and conidia (≈108 conidia per ml) of A. niger isolates AN12, AN69, and AN75. When berries were aseptically punctured with a sterile hypodermic syringe prior to inoculation, 60 to 86.7% and 42.5 to 100% of berries were infected with R. stolonifer and A. niger, respectively, and both developed BR symptoms (significantly different from control berries) after 48 h in humid chambers at 23°C. Injuries were needed for infection since no infection or only 23.3% of noninjured berries were infected with R. stolonifer and A. niger, respectively. For both pathogens, there was a significant (P < 0.043) interaction between isolates and the presence or absence of injuries. Both pathogens were successfully reisolated on APDA. Fungicide sensitivity tests were performed on detached cv. Thompson Seedless berries challenged by placing an ≈6 μl-drop of inoculum suspension (106 or 107 spores per ml of R. stolonifer isolate RS52 and A. niger isolate AN12, respectively) on injured berries. Pyraclostrobin (0.067 mg/ml) mixed with nicobifen at 0.134 mg/ml (BAS 516 01 F at 0.201 mg a.i./ml, BASF) and copper oxide at 1.2 mg/ml (Cuprodul 60 WP, Quimetal Chile) significantly (P < 0.01) inhibited infection (100% control) by R. stolonifer and A. niger. R. stolonifer was completely controlled by dicloran at 1.88 mg/ml (Botran 75 WP) and partially controlled by captan at 1.6 mg/ml (Captan 80 WP), but A. niger was not controlled by either fungicide. To our knowledge this is the first report of R. stolonifer causing BR of table grape in Chile (4). The severe outbreaks may be associated with warm weather conditions during harvest and injuries caused by birds, insects, or cultural practices. Infection caused by R. stolonifer or A. niger may be followed by sour rot organisms (yeasts or bacteria), as has been suggested elsewhere (1,2). References: (1) E. Gravot et al. Phytoma 543:36, 2001. (2) W. B. Hewitt Page 26 in: Compendium of Grape Diseases, American Phytopathological Society, St. Paul, MN, 1994. (3) B. A. Latorre and G. Vásquez. Aconex (Chile) 52:16, 1996. (4) F. Mujica and C. Vergara. Flora Fungosa Chilena. Universidad de Chile, Facultad de Agronomiacute;a, Santiago, Chile, 1980.


Author(s):  
Steven Carr

The rise of the American motion picture corresponds to the influx of immigrants from Eastern and Southern Europe. Just as many of these immigrants initially settled in East Coast and Midwest cities, both movies and movie audiences emerged there as an urban phenomenon. Rather than view this phenomenon only in terms of the images that films of this era offered, this chapter proposes to move beyond a “reflection paradigm” of film history. Of course, film texts reflected immigrant, ethnic, and racial identities. But these identities also existed beyond the text, across movies and movie-going, and embedded within diffuse, multiple, and overlapping networks of imagined relationships. Using Bakhtin’s concept of the chronotope, this chapter recounts some preliminary case studies involving race, ethnicity, and immigration to explore how future research in this area might probe the cultural practices of movie-going among diverse audiences during the first half of the twentieth century.


2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


2008 ◽  
Vol 7 (3) ◽  
pp. 351-358
Author(s):  
Takanori Yamamoto ◽  
Kohei Okuya ◽  
Hiroyuki Tanaka ◽  
Ko Kawakami ◽  
Akehiro Kanamoto

2020 ◽  
Vol 4 (2) ◽  
pp. 70 ◽  
Author(s):  
Stephen Owuamanam ◽  
Duncan Cree

Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell production by country and provides a perspective on the quantity of bio-calcium carbonate that could be produced annually from these wastes. The achievements obtained from the addition of recycled bio-calcium carbonate fillers (uncoated/unmodified) in polymer composites with a focus on tensile strength, flexural strength and impact toughness are discussed. To improve compatibility between calcium carbonate (mineral and bio-based) fillers and polymers, studies on surface modifiers are reviewed. Knowledge gaps and future research and development thoughts are outlined. Developing novel and innovative composites for this waste material could bring additional revenue to egg and seafood processors and at the same time reduce any environmental impact.


Sign in / Sign up

Export Citation Format

Share Document