scholarly journals Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review

2020 ◽  
Vol 4 (2) ◽  
pp. 70 ◽  
Author(s):  
Stephen Owuamanam ◽  
Duncan Cree

Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell production by country and provides a perspective on the quantity of bio-calcium carbonate that could be produced annually from these wastes. The achievements obtained from the addition of recycled bio-calcium carbonate fillers (uncoated/unmodified) in polymer composites with a focus on tensile strength, flexural strength and impact toughness are discussed. To improve compatibility between calcium carbonate (mineral and bio-based) fillers and polymers, studies on surface modifiers are reviewed. Knowledge gaps and future research and development thoughts are outlined. Developing novel and innovative composites for this waste material could bring additional revenue to egg and seafood processors and at the same time reduce any environmental impact.

The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4377
Author(s):  
Martijanti Martijanti ◽  
Sutarno Sutarno ◽  
Ariadne L. Juwono

Bamboo particles as reinforcement in composite materials are prospective to be applied to particleboard products in the industry. This study aimed to synthesize bamboo particle reinforced polymer composites as a substitute for particleboard products, which still use wood as a raw material. The parameters of the composite synthesis process were varied with powder sizes of 50, 100, and 250 mesh, each mesh with volume fractions of 10, 20, and 30%, matrix types of polyester and polypropylene, Tali Bamboo, and Haur Hejo Bamboo as reinforcements. Characterization included tensile strength, flexural strength, and morphology. Particleboard products were tested based on JIS A 5908-2003, including density testing, moisture content, thickness expansion after immersion in water, flexural strength in dry and wet conditions, bending Young’s modulus, and wood screw holding power. The results showed that the maximum flexural and tensile strength values of 91.03 MPa and 30.85 MPa, respectively, were found in polymer composites reinforced with Tali bamboo with the particle size of 250 mesh and volume fraction 30%. Particleboard made of polypropylene and polyester reinforced Tali Bamboo with a particle size of 250 mesh and a volume fraction of 30% composites meets the JIS A 5908-2003 standard.


2022 ◽  
Vol 58 (4) ◽  
pp. 28-36
Author(s):  
Velmurugan Natarajan ◽  
Ravi Samraj ◽  
Jayabalakrishnan Duraivelu ◽  
Prabhu Paulraj

This study aims to reveal the consequence of thickness reinforcement on Fiber Laminates (Polyester Resin, Glass Fiber, Aluminum, and Bentonite) and to see if it can enhance the mechanical properties and resistance of laminates. Glass fiber reinforced polymer composites have recently been used in automotive, aerospace, and structural applications where they will be safe for the application s unique shape. Hand layup was used to fabricate three different combinations, including Aluminium /Glass fiber reinforced polyester composites (A/GFRP), Bentonite/Glass fiber reinforced polyester composites (B/GFRP), and Aluminium&Bentonie/Glass fiber reinforced polyester composites (AB/GFRP). Results revealed that AB/GFRP had better tensile strength, flexural strength, and hardness than GFRP and A/GFRP. Under normal atmospheric conditions and after exposure to boiling water, hybrid Aluminium&Bentonite and glass fiber-reinforced nanocomposites have improved mechanical properties than other hybrid composites. After exposure to temperature, the flexural strength, tensile strength and stiffness of AB/GFRP Composites are 40 % higher than A/GFRP and 17.44% higher than B/GFRP Composites.


1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010


2018 ◽  
Vol 153 ◽  
pp. 01006 ◽  
Author(s):  
Suhas Yeshwant Nayak ◽  
Srinivas Shenoy Heckadka ◽  
Nishank Minil Amin ◽  
Ramakrishna Vikas Sadanand ◽  
Linto George Thomas

Hybridization of synthetic and natural fibres as reinforcement makes the polymer composites environmental friendly and sustainable when compared to synthetic fibres based polymer composites. In this study chopped strand mat/pineapple leaf fibres were hybridized. Four laminates with six layers each, with different stack sequence (GGGGGG, GPPPPG, PGGGGP and PPPPPP) were fabricated using hand layup technique while maintaining a fibre to matrix ratio of 30:70 by weight with polyester resin as matrix. Mechanical properties such as tensile and flexural strength were determined and morphology of fractured specimens was studied. Maximum tensile strength of 180 MPa was obtained for the laminate with six layers of chopped strand mat followed by hybrid laminate with four layers of chopped strand mat at the centre (120 MPa). Tensile strength of hybrid laminate with four layers of pineapple leaf fibres at the centre was in third position at 86 MPa. Least tensile strength of 65 MPa was obtained for the laminate with six layers of pineapple leaf fibres. Similar trend was observed in case of flexural behaviour of the laminates with maximum flexural strength of 255 MPa and minimum flexural strength 107 MPa. Scanning electron microscopy of the fractured specimen reinforced with chopped strand mat only, indicated, fibre pull out, matrix cracking and lack of matrix adhesion to fibres. In case of hybrid composite (GPPPPG and PGGGGP) delamination was observed to be prominent due to improper wetting of the pineapple leaf fibres with the matrix. More significant delamination led to lesser strength in case of pineapple fibres reinforced composites even though the fibre pull out was relatively less.


2021 ◽  
Vol 13 (24) ◽  
pp. 13878
Author(s):  
Hannah Porter ◽  
Abhijit Mukherjee ◽  
Rabin Tuladhar ◽  
Navdeep Kaur Dhami

Microbially Induced Calcium Carbonate Precipitation (MICP) is a natural biocementation that takes place in corals, stromatolites and beach rocks. In recent years, researchers have explored the emulation of this process as a sustainable alternative of engineered cement. Although the natural process is undoubtedly sustainable, its engineered variant deviates substantially from the natural process. In this paper, we investigate the environmental and economic performance of the engineered biocementation process vis-à-vis present manufacturing of calcium carbonate. SimaPro 8.0 software and the Ecoinvent V2.2 database were used for materials inputs and AUSLCI along with Cumulative Energy Demand 2.01 software were used for carbon footprint and eutrophication potential. Our results show that different metabolic pathways of MICP have considerably varying environmental impact. We observe that nature performs MICP sustainably at ambient conditions and geological time scales utilizing naturally occurring sources of carbon and calcium at micromoles concentrations. Due to the mandate on duration of construction projects, highly purified reactants in a high concentration are used in the engineered process. This has a negative environmental impact. We conclude that the sustainability of engineered MICP is directly impacted by the metabolic pathway of bacteria as well as the purity of the input chemicals. A few biotic processes are superior to the present industrial process for manufacturing calcium carbonate if ingredients of laboratory grade purity are replaced by industrial grade products. A bigger dividend can be obtained by introducing industry by-products as nutrients. The results of this study help to direct future research for developing sustainable biocement for the construction industry.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3406
Author(s):  
Mohammad E. Golmakani ◽  
Tomasz Wiczenbach ◽  
Mohammad Malikan ◽  
Reza Aliakbari ◽  
Victor A. Eremeyev

In the present research, wood flour reinforced polyethylene polymer composites with a coupling agent were prepared by injection molding. The effects of wood flour size, aspect ratios, and mold injection temperature on the composites’ mechanical properties were investigated. For the preparation of the polymer composites, five different formulations were created. The mechanical properties including tensile strength and the modulus, flexural strength and the modulus, and impact energy were measured. To investigate the changes in the properties resulting from different compositions, mechanical static and impact testing was performed. The obtained results indicate that by reducing the flour size, the tensile strength and modulus, flexural strength, and impact energy were reduced. In contrast, the flexural modulus increased. Furthermore, with the increment of injection molding temperature, the tensile strength and the modulus and the impact energy of the specimens were reduced. On the other hand, the flexural strength and the modulus increased. Thus, an optimized amount of injection molding temperature can provide improvements in the mechanical properties of the composite.


2020 ◽  
Vol 1010 ◽  
pp. 136-141
Author(s):  
Siti Shuhadah Md Saleh ◽  
Siti Maisarah Suhaimi ◽  
Hazizan Md Akil ◽  
Nur Farahiyah Mohammad

Carbon nanotubes (CNTs) have a great potential to be used as filler to enhance the mechanical properties of polymer composites due to excellent properties. However, CNTs have limitation of difficult to disperse in polymer matrix. The hybridization of CNTs and inorganic fillers can improve the dispersion and combine their properties in polymer composites. In the present work, the properties of the epoxy composites filled with carbon nanotube-calcium carbonate (CNTs-CaCO3) hybrid, at various filler loading (i.e., 1-5 wt.%) were studied. The CNTs-CaCO3 hybrid fillers were prepared by physically mixing (PHY) method and chemical vapor deposition (CVD) method. The tensile properties and hardness of both composites were investigated at different weight percentages of filler loading. The CNTs-CaCO3 CVD hybrid composites showed higher tensile strength and hardness than the CNTs-CaCO3 PHY hybrid composites. This increase was associated with the homogenous dispersion of CNT–CaCO3 particle filler. The morphological studies of fracture surfaces after tensile test by means of SEM showed homogenous dispersion of CNTs-calcium carbonate CVD hybrid in epoxy matrix. The result shows that the CNTs-calcium carbonate CVD hybrid composites are capable in increasing tensile strength by up to 116.4%, giving a tensile modulus of 40.3%, and hardness value of 39.2% as compared to a pure epoxy.


Author(s):  
Ryoichi S. Amano ◽  
Arun Matt ◽  
Qianyi Zhang ◽  
Shawn Strong ◽  
Shobhit Mishra

Sign in / Sign up

Export Citation Format

Share Document