scholarly journals Does FreezePruf Topical Spray Increase Plant Resistance to Freezing Stress?

2012 ◽  
Vol 22 (4) ◽  
pp. 542-546 ◽  
Author(s):  
Jeff A. Anderson

One method of plant freeze protection involves the application of compounds that promote freeze avoidance or tolerance. FreezePruf, a commercially available product recently marketed to improve both freeze avoidance and tolerance, contains polyethylene glycol, potassium silicate, glycerol, silicone polyether surfactant, and a bicyclic oxazolidine antidessicant. The goal of the present study was to evaluate the protection level provided by FreezePruf using laboratory-based methods involving plants and plant parts from species capable and incapable of low-temperature acclimation. FreezePruf did not lower the freezing temperature of pepper (Capsicum annuum) seedlings, celosia (Celosia argentea) seedlings, detached tomato (Solanum lycopersicum) leaves, or postharvest tomato fruit. Spray application of the putative cryoprotectant did not increase the freeze tolerance of bermudagrass (Cynodon dactylon) crowns or stolons. It is possible that a greater level of protection could be achieved with other species or different experimental protocols.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 532e-532
Author(s):  
Tomasz Anisko ◽  
Orville M. Lindstrom

Three cultivars of evergreen azaleas, `Coral Bell', `Hinodegiri', and `Red Ruffle', were grown under four watering regimes in containers and placed outdoors or in the greenhouse. The water content of the growing medium was maintained at either 0.3 to 0.4 or 0.5 to 0.6 m3m-3 from June 16 to August 30, when half of the plants under each of these regime was switched to the other watering regime. Freeze tests were conducted on August 30 and October 9, 1993. Injury to leaves, lower, middle, and upper stems was evaluated visually. Acclimation of leaves and upper stems prior to the August test, in most cases, was not stimulated by reduced water content, while the response of lower and middle stems was cultivar and location specific. The lower water content treatment after August 30 generally increased freeze tolerance of all plant parts regardless of the previous watering regime. The higher water content treatment after August 30 either prevented or delayed acclimation.


Author(s):  
M. Wisniewski ◽  
K. Schaffer ◽  
W. Hershberger

In woody plants, tissues displaying freeze tolerance respond to low temperature by the rapid loss of cellular water to extracellular ice whereas tissues exhibiting freeze avoidance exhibit deep supercooling in which case cellular water is isolated from the dehydrative and nucleating effects of extracellular ice. Biophysical data on cells that exhibit deep supercooling has led some authors to speculate that the structure and size of pores in cell walls would play an integral role in imparting a barrier to water movement and spread of ice. Distribution of the apoplastic tracer, lanthanum nitrate, was examined in stem tissues of several species of woody plants using a transmission electron microscope (TEM) in order to acquire data on general permeability of cell walls in species that deep supercool (P. persica, C. florida, B. lenta) vs. those that exhibit extracellular freezing (S. babylonica, B. papyrifera).


2012 ◽  
Vol 90 (4) ◽  
pp. 456-475 ◽  
Author(s):  
Kenneth B. Storey ◽  
Janet M. Storey

Winter survival for thousands of species of insects relies on adaptive strategies for cold hardiness. Two basic mechanisms are widely used (freeze avoidance by deep supercooling and freeze tolerance where insects endure ice formation in extracellular fluid spaces), whereas additional strategies (cryoprotective dehydration, vitrification) are also used by some polar species in extreme environments. This review assesses recent research on the biochemical adaptations that support insect cold hardiness. We examine new information about the regulation of cryoprotectant biosynthesis, mechanisms of metabolic rate depression, role of aquaporins in water and glycerol movement, and cell preservation strategies (chaperones, antioxidant defenses and metal binding proteins, mitochondrial suppression) for survival over the winter. We also review the new information coming from the use of genomic and proteomic screening methods that are greatly widening the scope for discovery of genes and proteins that support winter survival.


2006 ◽  
Vol 84 (1) ◽  
pp. 116-124 ◽  
Author(s):  
P J Baker ◽  
J P Costanzo ◽  
R Herlands ◽  
R C Wood ◽  
R E Lee, Jr.

We investigated the hibernation ecology and cold hardiness of hatchling diamondback terrapins, Malaclemys terrapin (Schoepf, 1793), an estuarine species that reaches 42°N along the Atlantic Ocean. During 3 years of study, about 50% of the nests we monitored harboured hatchlings during winter, and the majority (87%) of these individuals survived despite being intermittently exposed to subfreezing temperatures. Most such exposures were brief (ca. 12 h) and mild (minimum temperature: ca. –1.2 °C); however, turtles were occasionally subjected to longer chilling episodes and lower temperatures. In laboratory experiments, hatchlings supercooled extensively, attaining ca. –15 °C before spontaneously freezing. However, they were highly susceptible to inoculative freezing through contact with external ice and (or) ice-nucleating agents, which occur in nesting soil. Therefore, freeze avoidance through supercooling does not appear to be a viable cold-hardiness strategy in these turtles. Hatchlings subjected to experimental freezing survived exposure to temperatures as low as –3.0 °C, suggesting that freeze tolerance may account for the high winter survival observed in natural nests. We conclude that freeze tolerance in hatchling M. terrapin is promoted by high susceptibility to inoculation, which is known to moderate freezing, allowing cells time to adapt to the attendant physical and osmotic stresses.


1993 ◽  
Vol 115 (2) ◽  
pp. 169-174 ◽  
Author(s):  
M. Toner ◽  
E. G. Cravalho ◽  
M. Karel

Successful protocols for cryopreservation of living cells can be designed if the physicochemical conditions to preclude intracellular ice formation (IIF) can be defined. Unfortunately, all attempts to predict the probability of IIF have met with very limited success. In this study, an analytical model is developed to predict ice formation inside mouse oocytes subjected to a freezing stress. According to the model, IIF is catalyzed heterogeneously by the plasma membrane (i.e., surface catalyzed nucleation, SCN). A local site on the plasma membrane is assumed to become an ice nucleator in the presence of the extracellular ice via its effects on the membrane. This interaction is characterized by the contact angle between the plasma membrane and the ice cluster. In addition, IIF is assumed to be catalyzed at temperatures below -30° C by intracellular particles distributed throughout the cell volume (i.e., volume catalyzed nucleation, VCN). In the present study, these two distinctly coupled modes of IIF, especially SCN, are applied to various experimental protocols from mouse oocytes. Excellent agreement between predictions and observations suggests that the proposed model of IIF is adequate.


2017 ◽  
Vol 9 (1) ◽  
pp. 562-567
Author(s):  
Shilpa Shilpa ◽  
Rajinder Kaur ◽  
Monica Sharma ◽  
M. N. Adarsh

Buckeye rot disease of tomato which is one of the most devastating diseases of tomato crop is caused by soil born fungus Phytophthora nicotianae var. parasitica. In present study, the pathogen was isolated, morphologically identified and its pathogenicity was proved on susceptible commercial variety Solan Lalima and resistant line EC-251649 of tomato. Isolation of pathogen from the infected tomato fruit was achieved on Corn Meal Agar (CMA) out of two different media viz., Potato Dextrose Agar (PDA) and CMA. Fungal inoculum was prepared on Corn Meal broth. Inoculation with 10 ml of inoculum was found optimum in plant parts namely, stem, leaves and fruits. Parental lines were inoculated to test their disease reaction to buckeye rot. Symptoms of infection appeared on leaves and fruits only. Solan Lalima was found to be highly susceptible to with disease severity of 92 % and 100 % disease incidence, while EC-251649 was found moderately resistant on the basis of 16 % disease severity and 10 % disease incidence to the disease. After confirmation of resistance and susceptibility, the parental lines were surveyed for polymorphism using 42 primers and 32 were recorded to be polymorphic revealing that the differences are present at DNA level also. This is the very first study which evaluated parental lines for buckeye rot disease reaction on morphological as well as molecular basis. These lines will be further used for quantitative trait loci (QTL) analysis/gene tagging for buckeye rot and marker assisted selection to provide improved varieties to the farmers.


HortScience ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 165-168 ◽  
Author(s):  
Stephanie Byard ◽  
Michael Wisniewski ◽  
Jianhua Li ◽  
Dale Karlson

Temperate woody plants have evolved two methods for coping with seasonal exposure to subzero temperatures. Supercooling is a freeze-avoidance strategy in which cells can avoid intracellular freezing below subzero temperatures. Nonsupercooling is a freeze-tolerance strategy in which the growth of extracellular ice crystals is promoted and intracellular water is withdrawn. Thus, nonsupercooling species have also evolved adaptations to tolerate intracellular dehydration, which results from the formation of extracellular ice. The goal of our study was to provide the first broad characterization of freezing response within two representative woody genera (Acer and Betula) in relation to the evolution of the freezing response trait. Although all of the examined Acer species (nine) exhibited xylem supercooling response, only five of 14 Betula species were identified as supercooling species. When the characterized freezing responses were overlaid onto a phylogenetic tree, the supercooling freezing response was revealed as an ancestral trait in Betula.


Author(s):  
L. Shuaibu ◽  
U. Abdullahi ◽  
A. I. Yaradua ◽  
J. I. Bungudu

This study investigated the phytoremediation potentials of Cynodon dactylon in heavy metal contaminated soils of Challawa Industrial Estate, Kano, Kano State, Nigeria. A total of 100 samples comprising of 50 soils and 50 plant parts of C. dactylon were evaluated for the presence of heavy metals by the use of atomic absorption spectrophotometry (AAS) method. Extent of heavy metal soil contamination and phytoremediation potentials of the study plant were assessed by the use of metal contamination factor (Cf) for soil; Bioaccumulation and translocation factors for the plant sample respectively. From the results, levels (mg/kg) of the metals in the C. dactylon from contaminated and control sites were found to be in the sequence of Fe (442.60) > Cu (138.35) > Zn (133.53) > Cd (61.50) > Pb (42.47) > Mn (28.40) > Ni (18.40) > Cr (17.73) and Fe (88.60) > Zn (38.18) > Cu (33.60) > Ni (13.70) > Mn (12.67) > Pb (6.07) > Cd (5.60) > Cr (5.03) respectively. The contamination factor values Cf, (mg/kg) of all the metals in the soils were found to be in the sequence of Cd (10.73) > Cu (5.64) > Cr (3.07) > Pb (2.98) > Ni (2.17) > Zn (2.09) > Mn (2.00) > Fe (1.72). The results showed that the soils are highly contaminated with Cd, considerably contaminated with Cu and Cr, and moderately contaminated with Fe, Mn, Zn, Ni and Pb. The bioaccumulation and translocation factor values (BAF>1 and TF<1) for Cd, Cr, Cu, Mn, Ni, Pb and Zn suggest accumulation in roots and qualify the plant as good candidate for phytostabilization. Moreover, the bioaccumulation and translocation factor values (BAF and TF>1) for the plant species were greater than 1 for Fe suggesting efficient accumulation in the shoot. However, C. dactylon could be recommended as good candidate for phytoextraction of Fe and phytostabilization of the study investigated metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in multi-metal contaminated soils.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elnaz Zareei ◽  
Farhad Karami ◽  
Mansour Gholami ◽  
Ahmad Ershadi ◽  
Saber Avestan ◽  
...  

Abstract Background In northern Iran and other cold regions, winter freezing injury and resultant yield instability are major limitations to strawberry production. However, there is scarcity of information on the physiological and biochemical responses of strawberry cultivars to freezing stress. This study aimed to investigate the physiological and biochemical responses of strawberry cultivars (Tennessee Beauty, Blakemore, Kurdistan, Queen Elisa, Chandler, Krasnyy Bereg, and Yalova) to different freezing temperature treatments (− 5, − 10, − 15, − 20, and − 25 °C) under controlled conditions. Results All measured physiological and biochemical features were significantly affected by the interaction effect between low temperatures and cultivars. Tennessee Beauty showed the highest RWC at − 25 °C. The highest Fv/Fm was observed in Queen Elisa. Krasnyy Bereg had the least freezing injury (FI) in crown and leaf, while Yalova and Chandler showed the highest crown and leaf FI, respectively. At − 20 to − 25 °C, the highest carbohydrates contents of crown and leaf were noted in Blakemore and Krasnyy Bereg cultivars, respectively. The Yalova showed the highest protein content in both crown and leaf tissues at − 25 °C. The Tennessee Beauty and Blackmore cultivars showed the highest proline in crowns and leaves at − 15 °C, respectively. The highest ThioBarbituric Acid Reactive Substances (TBARS) contents in the crown and leaf were observed in Kurdistan and Queen Elisa, respectively. Queen Elisa and Krasnyy Bereg cultivars showed SOD and POD peaks in the crown at − 15 °C, respectively. Conclusion Freezing stress was characterized by decreased Fv/Fm and RWC, and increased FI, TBARS, total carbohydrates, total proteins, proline content, and antioxidant enzyme activity. The extent of changes in above mentioned traits was cultivar dependent. FI and TBARS were the best traits among destructive parameters for evaluating freezing tolerance. Moreover, maximum quantum yield of PSII (Fv/Fm index), as non-destructive parameters, showed a significant efficiency in rapid assessment for screening of freezing tolerant strawberry cultivars. The cultivars Krasnyy Bereg, Queen Elisa, and Kurdistan were the most tolerant cultivars to freezing stress. These cultivars can be used as parents in breeding programs to develop new freezing tolerant cultivars.


Sign in / Sign up

Export Citation Format

Share Document