scholarly journals The Effect of Increasing Application Rates of Nine Plant Growth Regulators on the Turf and Stolon Characteristics of Pot-grown ‘Patriot’ Hybrid Bermudagrass

2015 ◽  
Vol 25 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Marco Volterrani ◽  
Nicola Grossi ◽  
Monica Gaetani ◽  
Lisa Caturegli ◽  
Aimila-Eleni Nikolopoulou ◽  
...  

Vegetatively propagated warm-season turfgrasses are established with methods that rely on large quantities of propagation material and subsequent plant growth support. The precision seeding adopted for some seed propagated crops controls the depth and spacing at which seeds are placed in the soil. Sprigs that are reduced in length could potentially be suitable for existing machinery, and precision planting could enhance the efficiency of use of the propagation material. The aim of the present study was to carry out a preliminary screening on products known to act as plant growth regulators to explore their potential use for controlling stolon development and elongation of ‘Patriot’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) grown in pots for propagation purposes. Trinexapac-ethyl (TE), chlormequat chloride (CM), paclobutrazol (PB), propiconazole (PPC), diquat (DQ), flazasulfuron (FS), glyphosate (GP), ethephon (EP), and gibberellic acid (GA) were applied to pot-grown ‘Patriot’ hybrid bermudagrass turf in eight different application rates, ranging for each product from the minimum expected effective rate to a potentially harmful rate. Of the tested treatments, TE applied at 2.0 kg·ha−1 and PB applied at 1.0 kg·ha−1 reduced stolon and internode length without causing a reduction in the stolon number or turf quality. PPC was also effective in reducing stolon length, but the effect on internode length was not statistically significant. Stolon length was unaffected by CM, while DQ and GP induced stolon elongation. FS, EP, and GA affected stolon length without a consistent relation between stolon length and application rate. The chemical suppression of stolon elongation in pot-grown ‘Patriot’ hybrid bermudagrass can contribute to controlling sprig size for use with precision seeding machinery.

2006 ◽  
Vol 20 (3) ◽  
pp. 702-705 ◽  
Author(s):  
Frederick W. Totten ◽  
Joe E. Toler ◽  
Lambert B. Mccarty

Studies were conducted for 12 wk from June 16 to September 8, 2003 and July 10 to October 4, 2004 with the objective of evaluating growth regulation, lateral regrowth, and injury of Tifway bermudagrass [Cynodon dactylon (L.) × C. transvaalensis Burtt-Davy Tifway] in response to two GA-inhibiting plant growth regulators, trinexapac-ethyl and flurprimidol. Trinexapac-ethyl was applied alone at 0, 0.052, and 0.104 kg ai/ha and flurprimidol alone at 0, 0.14, and 0.28 kg ai/ ha, plus all combinations. Applications were made every 3 wk for the duration of the study. Tifway bermudagrass clipping yield was reduced 33% and 54% by trinexapac-ethyl at 0.104 kg/ha at 4 and 8 wk after initial treatment (WAIT), respectively. Flurprimidol at 0.28 kg/ha reduced clipping yield 49% 8 WAIT. Lateral regrowth was reduced 20% 2 WAIT by trinexapac-ethyl at 0.104 kg/ha, and 26% 2 WAIT by flurprimidol at 0.28 kg/ha. Lateral regrowth was reduced 13% 4 WAIT by trinexapac-ethyl at 0.104 kg/ha, and 15% 4 WAIT by flurprimidol at 0.28 kg/ha. Overall, acceptable injury (<30%) was observed with a trinexapac-ethyl and flurprimidol tank mixture; however, this evaluation did not indicate an advantage in growth regulation when using a tank mixture of these products, compared to using them alone.


2011 ◽  
Vol 94 (6) ◽  
pp. 1715-1721 ◽  
Author(s):  
Dasharath P Oulkar ◽  
Kaushik Banerjee ◽  
Sunil Kulkarni

Abstract A selective and sensitive LC-MS/MS method is presented for simultaneous determination of 12 plant growth regulators, viz., indol-3-acetic acid, indol-3-butyric acid, kinetin, zeatin, 6-benzyl aminopurine, gibberellic acid, abscisic acid, chlormequat chloride, forchlorfenuron, paclobutrazole, daminozide, and 2,4-dichlorophenoxy acetic acid, in bud sprouts and grape berries. The sample preparation method involved extraction of homogenized sample (5 g) with 40 mL methanol (80%), and final determination was by LC-MS/MS in the multiple reaction monitoring (MRM) mode with time segmentation for quantification supported by complementary analysis by quadrupole-time of flight (Q-TOF) MS with targeted high-resolution MS/MS scanning for confirmatory identification based on accurate mass measurements. The recovery of the test compounds ranged within 90–107% with precision RSD less than 5% (n = 6). The method could be successfully applied in analyzing incurred residue samples, and the strength of accurate mass analysis could be utilized in identifying the compounds in cases where the qualifier MRM ions were absent or at an S/N less than 3:1 due to low concentrations.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 704-706 ◽  
Author(s):  
Edward W. Bush ◽  
Wayne C. Porter ◽  
Dennis P. Shepard ◽  
James N. McCrimmon

Field studies were performed on established carpetgrass (Axonopus affinis Chase) in 1994 and 1995 to evaluate plant growth regulators (PGRs) and application rates. Trinexapac-ethyl (0.48 kg·ha-1) improved turf quality and reduced cumulative vegetative growth (CVG) of unmowed and mowed plots by 38% and 46%, respectively, in 1995, and suppressed seedhead height in unmowed turf by >31% 6 weeks after treatment (WAT) both years. Mefluidide (0.14 and 0.28 kg·ha-1) had little effect on carpetgrass. Sulfometuron resulted in unacceptable phytotoxicity (>20%) 2 WAT in 1994 and 18% phytotoxicity in 1995. In 1995, sulfometuron reduced mowed carpetgrass CVG 21%, seedhead number 47%, seedhead height 36%, clipping yield 24%, and reduced the number of mowings required. It also improved unmowed carpetgrass quality at 6 WAT. Sethoxydim (0.11 kg·ha-1) suppressed seedhead formation by 60% and seedhead height by 20%, and caused moderate phytotoxicity (13%) in 1995. Sethoxydim (0.22 kg·ha-1) was unacceptably phytotoxic (38%) in 1994, but only slightly phytotoxic (7%) in 1995, reduced clipping yields (>24%), and increased quality of mowed carpetgrass both years. Fluazasulfuron (0.027 and 0.054 kg·ha-1) phytotoxicity ratings were unacceptable at 2 WAT in 1994, but not in 1995. Fluazasulfuron (0.054 kg·ha-1) reduced seedhead height by 23% to 26% in both years. Early seedhead formation was suppressed >70% when applied 2 WAT in 1994, and 43% when applied 6 WAT in 1995. The effects of the chemicals varied with mowing treatment and evaluation year. Chemical names used: 4-(cyclopropyl-x-hydroxy-methylene)-3,5 dioxo-cyclohexane-carboxylic acid ethyl ester (trinexapac-ethyl); N-2,4-dimethyl-5-[[(trifluoro-methyl)sulfonyl]amino]phenyl]acetamide] (mefluidide); [methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl) amino]carbonyl] amino] sulfonyl]benzoate)] (sulfometuron); (2-[1-(ethoxyimino)butyl-5-[(2-ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one) (sethoxydim); 1-(4,6-dimethoxypyrimidin-2yl)-3-[(3-trifluoromethyl-pyridin 2-yl) sulphonyl] urea (fluazasulfuron).


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 983E-984
Author(s):  
Jennifer K. Boldt ◽  
James E. Barrett

A daminozide plus chlormequat chloride tank mix spray was applied to six Coleus cultivars or breeding lines at different times during propagation. For UF 03-8-10 and `Coco Loco', plants sprayed on day 7 or day 10 were shorter than control plants at transplant, but plants sprayed on day 13 were not. Other cultivars did not respond to single applications. Five of the six cultivars responded to application on days 7 and 13. Plants of UF 03-8-3 and `Coco Loco' were significantly shorter than control plants at transplant. Plants of UF 03-8-10, UF 03-6-1, and UF 03-17-8 were shorter than control plants at 3 weeks after transplant. `Hurricane Louise' did not respond to the tank mix. A second study found a cultivar specific response to three chemical treatments applied as a spray on day 10 of propagation. At transplant, UF 03-8-10, UF 03-8-3, UF 03-6-1, and `Coco Loco' plants sprayed with the tank mix at 2500 plus 1500 mg·L-1, respectively, were significantly shorter than the control plants. A uniconazole spray at 2 mg·L-1 reduced elongation in UF 03-8-10, UF 03-8-3, and UF 03-6-1, compared to control plants. Ethephon at 250 mg·L-1 reduced elongation in UF 03-8-10, UF 03-8-3, and `Coco Loco' plants. None of the chemical sprays reduced elongation in `Hurricane Louise' at the concentrations applied. Ethephon increased axillary branching in all cultivars, and induced lower leaf abscission in UF 03-17-8 and `Hurricane Louise'; leaf malformation in UF 03-6-1 and `Coco Loco'; and color alteration in UF 03-6-1, UF 03-8-3, and `Coco Loco'.


2021 ◽  
pp. 1-3
Author(s):  
S. Patil Manasi ◽  
V. Waghmode Ahilya ◽  
Chirag Narayankar ◽  
D. K. Gaikwad

Simarouba glauca is a medicinally important oil yielding plant. It is a rainfed wasteland evergreen edible oil tree. Presowing soaked seeds of Simarouba glauca in various Plant Growth Regulators (PGRs) are analyzed to estimate their fatty acid composition. The fatty acids extraction was done using petroleum ether and fatty acid methyl esters (FAMEs) were analyzed by Gas Chromatography with Flame Ionization Detector (GC-FID). Due to the application of growth regulators stearic acid, lingoceric acid and linolenic acid enhances noticeably, while, total saturated fatty acids are augmented due to cysteine, Salicylic Acid (SA) and methionine treatments and monosaturated fatty acids elevated due to the application of 6-Benzylaminopurine (6-BA) whereas polyunsaturated fatty acids enhanced in response to Gibberellic Acid (GA) and Chlormequat chloride (CCC). The PGR induced changes in fatty acid composition predominantly in polyunsaturated fatty acids may certainly recover the oil quality of S. glauca seeds.


Author(s):  
S.U. Pawar ◽  
W.N. Narkhede ◽  
D.N. Gokhale ◽  
I.A.B. Mirza

Background: Pigeonpea being highly branching and indeterminate growth habit responds very well to crop geometry. Hence to achieve potential yields, it is important to maintain optimum plant population which can effectively utilize available moisture, nutrients and solar radiation. The plant growth regulators are also known to enhance the source sink relationship and stimulate the translocation of photo assimilates, thereby increase the productivity. Methods: A field experiment was conducted at experimental farm of Agronomy Department, V.N.M.K.V., Parbhani during kharif season of 2018 and 2019. The experiment was laid out in split plot design with four main plot treatments comprised of four crop geometries as 90 cm x 20 cm, 120 cm x 20 cm 60-120 cm x 20 cm and 75-150 cm x 20 cm and sub plot treatments were five treatments on foliar application of plant growth regulators i.e. NAA @ 40 ppm, Mepiquat chloride @ 50 g a.i. ha-1, Brassinosteroids @ 0.1 ppm, Chlormequat Chloride @ 75 g a.i ha-1 and control. Result: The crop geometry of 120 cm x 20 cm and 75-150 cm x 20 cm recorded higher values of all yield parameters followed by crop geometry of 60-120 cm x 20 cm. While the seed, straw and biological yield of pigeonpea as well as highest net realization of Rs. 72072 ha-1 was obtained with crop geometry of 60-120 cm x 20 cm followed by 90 cm x 20 cm. Among the plant growth regulators foliar application of Brassinosteroids @ 0.1 ppm (G3) tended to recorded higher yield parameters, seed yield and fertility coefficient of pigeonpea as well as highest net realization followed by foliar application of NAA @ 40 ppm.


2012 ◽  
Vol 22 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Christopher J. Currey ◽  
John E. Erwin

Our objectives were to assess the efficacy of various plant growth regulators (PGRs) on stem elongation and branching of 11 kalanchoe (Kalanchoe) species with ornamental characteristics: beauvard’s widow’s-thrill (K. beauvardii), K. glaucescens, lavender scallops or red-leaved kalanchoe (K. fedtschenkoi), K. longiflora, chandelier plant (K. manginii), marnier’s kalanchoe (K. marnieriana), K. millotii, flower dust plant (K. pumila), K. rosei, common kalanchoe or nentabos (K. rotundifolia), and K. streptantha. Foliar spray applications of deionized water, ancymidol (15−60 ppm), benzyladenine (75−300 ppm), chlormequat chloride (750−3000 ppm), daminozide (1250−5000 ppm), ethephon (250−1000 ppm), paclobutrazol (10−40 ppm), or uniconazole (5−20 ppm) were applied 2 weeks after plants were pinched. Stem length at the time of application and 4 weeks after applications and branch number were recorded. While effective chemicals and concentrations varied widely among species, paclobutrazol and uniconazole were identified as providing broad efficacy with respect to inhibition of stem elongation across all 11 species in this study. Additionally, benzyladenine and ethephon increased the number of branches for several species.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 398-402 ◽  
Author(s):  
D.W. Williams ◽  
P.B. Burrus

Perennial ryegrass (PR) (Lolium perenne L.) is often used as a low-mowed turf in the transition climatic zone. However, control of the fungal disease gray leaf spot (Pyricularia grisea (Cooke) Sacc.) has drastically increased the cost of PR management. Seeded bermudagrasses (SB) [Cynodon dactylon (L.) Pers.] are viable options for turfgrass management operations with limited pesticide budgets. Field trials in 2000 and 2001 tested the effects of two herbicides and several plant growth regulators (PGR) during renovation of mature PR to either of two cultivars of SB. The herbicides glyphosate and pronamide, and the PGR's trinexapac-ethyl, ethephon, paclobutrazol, and flurprimidol were applied at label rates to mature stands of PR. `Mirage' and `Yukon' SB were seeded separately either 1 or 7 days after applications (DAA) of chemicals. SB establishment, first-winter survival, and turfgrass quality (TQ) were rated and compared to an untreated control. Results indicated that only applications of glyphosate resulted in acceptable renovation of PR to SB, but also resulted in significantly lower (P< 0.05) TQ during the transition. Applications of pronamide resulted in significantly less (P < 0.05) SB transition than did applications of glyphosate, but pronamide plots maintained higher TQ. None of the PRG treatements had a significant effect (P < 0.05) on SB transition. There were no consistent significant effects (P < 0.05) due to DAA among any of the chemicals evaluated. First-winter survival was significantly higher (P < 0.05) with `Yukon' than with `Mirage' in both years. We conclude that among the chemicals tested, only applications of glyphosate resulted in acceptable transition of PR to SB, but a significant reduction of TQ should be expected during the transition. Chemical names used: [N-(phosphonomethyl) glycine] (glyphosate); [3.5-dichloro-N-(1,1-dimethyl-2-propynyl)-benzamide] (pronamide); [(2-chloroethyl) phosphonic acid] (ethephon); [4-(cyclopropyl-α-hydroxy-methylene)-3,5-dioxo-cyclohexane-cabroxylic acid ethyl ester] (trinexapac-ethyl); [(±)-(R*R*)β-[(4-chlorophenyl)-methyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol] (paclobutrazol); [α-(1-methylethyl)-α-[4-(trifluromethoxy)phenyl]-5-pyrmidinemethanol] (flurprimidol).


1993 ◽  
Vol 73 (2) ◽  
pp. 607-610 ◽  
Author(s):  
John C. Lewis ◽  
Hak-Yoon Ju

The plant growth regulators, daminozide (2500 ppm), chlormequat chloride (1500 ppm), ethephon (500 ppm), mepiquat chloride (100 ppm), and paclobutrazol (1000 ppm), were foliar applied to sprouting-year and to first fruiting-year commercial lowbush blueberry (Vaccinium angustifolium Ait.). In sprouting-year blueberry, flower bud production was increased by paclobutrazol, resulting in significantly improved bloom and yield the following year. In fruiting-year blueberry, flower bud production was significantly increased by paclobutrazol in the year of application and resulted in improved bloom and yield in the following fruiting year. The effects of the other treatments on these parameters were in most cases not significant. Daminozide showed a significant bloom response with a sprouting-year application, but this did not translate into a yield response. Key words: Vaccinium angustifolium, plant growth regulators, paclobutrazol, flower bud production


Sign in / Sign up

Export Citation Format

Share Document