scholarly journals Two Computer-based Diagnostic Systems for Diseases, Insect Pests, and Physiological Disorders of Citrus and Selected Tropical Fruit Crops

1997 ◽  
Vol 7 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Michael B. Thomas ◽  
Jonathan H. Crane ◽  
James J. Ferguson ◽  
Howard W. Beck ◽  
Joseph W. Noling

The TFRUIT·Xpert and CIT·Xpert computerbased diagnostic programs can quickly assist commercial producers, extension agents, and homeowners in the diagnosis of diseases, insect pest problems and physiological disorders. The CIT·Xpert system focuses on citrus (Citrus spp.), whereas the TFRUIT·Xpert system focuses on avocado (Persea americana Mill.), carambola (Averrhoa carambola L.), lychee (Litchi chinensis Sonn.), mango (Mangifera indica L.), papaya (Carica papaya L.), and `Tahiti' lime (Citrus latifolia Tan.). The systems were developed in cooperation with research and extension specialists with expertise in the area of diagnosing diseases, disorders, and pest problems of citrus and tropical fruit. The systems' methodology reproduces the diagnostic reasoning process of these experts. Reviews of extension and research literature and 35-mm color slide images were completed to obtain representative information and slide images illustrative of diseases, disorders, and pest problems specific to Florida. The diagnostic programs operate under Microsoft-Windows. Full-screen color images are linked to symptoms (87 for CIT·Xpert and 167 for TFRUIT·Xpert) of diseases, disorders, and insect pest problems of citrus and tropical fruit, respectively. Users can also refer to summary documents and retrieve management information from the Univ. of Florida's Institute of Food and Agricultural Sciences extension publications through hypertext links. The programs are available separately on CD-ROM and each contains over 150 digital color images of symptoms.

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 549-555 ◽  
Author(s):  
Bruce Schaffer ◽  
Frederick S. Davies ◽  
Jonathan H. Crane

The effects of flooding calcareous soil on physiology and growth have been studied for several subtropical and tropical fruit crops including avocado (Persea americana Mill.), mango (Mangifera indica L.), carambola (Averrhoa carambola L.), and several Annona species. In calcareous soils that have a high pH, short-term flooding can actually be beneficial to subtropical and tropical fruit crops by increasing the solubility of particle-bound nutrient elements such as Fe, Mn and Mg due to flooding-induced decreases in soil pH. Additionally, flooding reduces the redox potential in the soil, resulting in Fe being reduced from Fe3+ to Fe2+, which is the cation metabolized by plants. As with other woody perennial crops, one of the early physiological responses of subtropical and tropical fruit trees to flooding is a decrease in stomatal conductance and net CO2 assimilation. If the flooding period is prolonged, lack of O2 (anoxia) in the soil results in a reduction of root and shoot growth, wilting, decreased nutrient uptake and eventual death. The flooding duration required to cause tree mortality varies among species, among cultivars within species, and with environmental conditions, particularly temperature. Several tropical and subtropical fruit crops have anatomical or morphological adaptations to tolerate prolonged flooding, such as development of hypertrophied stem lenticels, adventitious rooting or formation of porous aerenchyma tissue. For grafted trees, flooding-tolerance is conferred by the rootstock and not the scion. Therefore there is a possibility to increase flood tolerance of subtropical and tropical fruit crops by identifying or developing flood-tolerant rootstocks.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 551A-551
Author(s):  
B. Schaffer ◽  
A.W. Whiley ◽  
C. Searle

Banana (Musa sp.), mango (Mangifera indica), and avocado (Persea americana) plants were grown in controlled-environment glasshouses in ambient (350 μmol CO2/mol) and enriched (700–1000 (mol CO2/mol) atmospheric CO2 concentrations. At each CO2 concentration, plants were either exposed to sink-limiting (root restriction) or non-sink-limiting conditions (no root restriction). Total carbon assimilation and dry matter accumulation were generally greater for plants in the enriched CO2 environment than for plants grown in ambient CO2. However, plants grown in the enriched CO2 environment were less efficient at assimilating carbon than plants grown in ambient CO2. There was a downward regulation of net CO2 assimilation due to root restriction that resulted in less dry matter accumulation than in non-root-restricted plants. This may explain the lower net CO2 assimilation rates often observed for tropical fruit trees grown in containers compared to those of field-grown trees. Atmospheric CO2 enrichment generally did not compensate for reductions in net CO2 assimilation and dry matter accumulation that resulted from root restriction.


2006 ◽  
Vol 16 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Thomas L. Davenport ◽  
Thomas L. White ◽  
Stanley P. Burg

U.S. regulations prevent importation of fresh horticultural commodities that have not received an approved quarantine treatment assuring 99.999% (Probit 9) mortality of potentially invasive insect pests. Because imported mangoes (Mangifera indica) are likely to be infested by the caribbean fruit fly (Anastrepha suspensa) and other tropical fruit flies in the Americas, such as the mexican fruit fly (A. ludens), guava fruit fly (A. striata), inga fruit fly (A. distincta), south american fruit fly (A. fraterculus), sapote fruit fly (A. serpentina), and the west indian fruit fly (A. obliqua), they must be hot-water treated prior to shipment in order to satisfy quarantine requirement. Hot water treatment often damages the fruit, especially if it is not fully mature. Hypobaric [low pressure (LP)] intermodal shipping containers developed by the VacuFresh Corp. preserve fresh commodities, such as horticulturally mature mangoes, far longer than is possible using other technologies. We tested the ability of caribbean fruit fly eggs and larvae to survive simulated optimal hypobaric conditions for shipment of mangoes [15 and 20 mm mercury (Hg), ≥98% relative humidity, 13 °C (the lowest, safe nonchilling temperature)]. Caribbean fruit fly eggs or larvae were maintained on agar media, flushed with one air change per hour at the storage pressure, and shielded with Mylar to prevent radiant heat uptake and limit evaporative cooling. Nearly 98% of the eggs and larvae were killed within 1 week at 15 and 20 mm Hg in nine replicated experiments. All eggs were killed by 11 days with a predicted kill of 99.999% of the eggs by 9.4 days in 15 mm Hg and 10.6 days in 20 mm Hg LP (based on Probit 9 statistical analysis), whereas a substantial number of eggs survived to 14 days at atmospheric pressure (760 mm Hg). Shipment of fresh produce using this technology promises to provide quarantine control while preserving the freshness of fully mature tropical fruits and vegetables.


2010 ◽  
Vol 20 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Jeffrey G. Williamson ◽  
Jonathan H. Crane

A wide variety of temperate, subtropical, and tropical fruit crops are grown commercially in Florida. Farm size ranges from large commercial operations exceeding 100 acres to small 1- or 2-acre “estate” farms. Irrigation and fertilization practices vary widely with crop, soil type, and management philosophy. However, many growers are adopting practices such as microirrigation, fertigation, and other technologies, which, if properly used, should reduce water and fertilizer inputs and minimize leaching and runoff of fertilizers and pesticides. Although fertilizer and irrigation recommendations exist for major crops such as avocado (Persea americana), mango (Mangifera indica), and blueberry (Vaccinium spp.), there is little research-based information specific to Florida for many minor crops, including muscadine (Vitis rodundifolia), blackberry (Rubus spp.), sapodilla (Manilkara zapota), guava (Psidium guajava), papaya (Carica papaya), and others. Even where recommendations exist, refinement of irrigation and fertilization practices is needed because of changes in technology.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Priya Lokare ◽  
Sumia Fatima

Mango saplings go through the many insect pests, fungal, bacterial diseases during nursery condition and these symptoms will persist till flowering and fruiting period and result in the huge economic losses. Majority mango saplings couldn’t reach upto flowering and fruiting stage it dies in the nursery conditions. This is major threat to the nursery owners because mango saplings having great demand all over the year, therefore buyers refuse to purchase diseased saplings. In the recent years the disease becomes severe in nursery plants, on young leaves, symptoms appear as irregular black necrotic spots on both sides. Pathogen present on the infected leaves, twig and fallen leaves serves as the major source of infection and spreads by rain splashed conidia. Survey was carried out to know the prevalence of diseases in nursery conditions for that Sanket Nursery Wakadi, Taluka Rahta was selected. There were 4 varieties of mango found in Sanket Nursery that were, Keshar, Payari, Mallika and Ratna. During the survey various fungal and insect pest diseases were observed. Anthracnose symptoms caused by Colletotrichum gloeosporioides, little leaf notcher, coconut scale, mango gall midge, white mango scale, stem blight, powdery mildew, hairy caterpillar etc. were found in large scale.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian S. E. Bally ◽  
◽  
Aureliano Bombarely ◽  
Alan H. Chambers ◽  
Yuval Cohen ◽  
...  

Abstract Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Md Munir Mostafiz ◽  
Errol Hassan ◽  
Rajendra Acharya ◽  
Jae-Kyoung Shim ◽  
Kyeong-Yeoll Lee

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is an insect pest that commonly affects stored and postharvest agricultural products. For the control of insect pests and mites, methyl benzoate (MBe) is lethal as a fumigant and also causes contact toxicity; although it has already been established as a food-safe natural product, the fumigation toxicity of MBe has yet to be demonstrated in P. interpunctella. Herein, we evaluated MBe as a potential fumigant for controlling adults of P. interpunctella in two bioassays. Compared to the monoterpenes examined under laboratory conditions, MBe demonstrated high fumigant activity using a 1-L glass bottle at 1 μL/L air within 4 h of exposure. The median lethal concentration (LC50) of MBe was 0.1 μL/L air; the median lethal time (LT50) of MBe at 0.1, 0.3, 0.5, and 1 μL/L air was 3.8, 3.3, 2.8, and 2.0 h, respectively. Compared with commercially available monoterpene compounds used in pest control, MBe showed the highest fumigant toxicity (toxicity order as follows): MBe > citronellal > linalool > 1,8 cineole > limonene. Moreover, in a larger space assay, MBe caused 100% mortality of P. interpunctella at 0.01 μL/cm3 of air after 24 h of exposure. Therefore, MBe can be recommended for use in food security programs as an ecofriendly alternative fumigant. Specifically, it provides another management tool for curtailing the loss of stored food commodities due to P. interpunctella infestation.


2021 ◽  
Vol 3 (2) ◽  
pp. 383-393
Author(s):  
Patient Farsia Djidjonri ◽  
Nukenine Elias Nchiwan ◽  
Hartmut Koehler

The present study investigates the effect of intercropping (maize-cowpea, maize-okra, maize-okra-cowpea, okra-cowpea) compared to insecticide application on the level of infestation of insect pests and the final yield of maize, cowpea and okra. Field experiments were conducted during the 2016 and 2017 cropping seasons in the Guinean Savannah (Dang-Ngaoundere) and Sudano Sahelian (Gouna-Garoua) agro-ecological zones in Cameroon. Our experimental design was a split plot arrangement in a randomized complete block with four replications. The main factor was assigned to the use of insecticide (Cypermethrin) and sub plots were devoted for cropping systems. We compared the efficiency of intercropping to that of Cypermethrin application on the Yield of maize, cowpea and okra as influenced by insect pest damages. The comparison of monocropped sprayed by Cypermethrin to unsprayed showed that, in Dang, insect pests reduced maize yield by 37% and 24% in 2016 and 2017, respectively, whereas in Gouna, it was lower than 8% during the both years. Reduction in seed yield by insect pests on cowpea in Dang represented 47% and 50% in 2016 and 2017, respectively, whereas in Gouna, it was 55% and 63% in 2016 and 2017, respectively. For okra, insect pests reduced okra fruit yield by 25% and 44% in Dang and 23% and 28% in Gouna, respectively, in 2016 and 2017. Crop yield was lower in intercropping compared to monoculture due to competition of plants in association on different resources. Considering the total yields obtained from each intercropping, intercropping trials resulted generally in higher yields compared to mono-culture (LER > 1) in both sites and years but the respective yields were quite different. On the basis of the results obtained, we recommend maize-cowpea intercropping as a sustainable solution to reduce the infestation level of their pest insects.


2021 ◽  
Vol 70 ◽  
pp. 158-166
Author(s):  
Qiang Zhang ◽  
Wei Dou ◽  
Clauvis Nji Tizi Taning ◽  
Guy Smagghe ◽  
Jin-Jun Wang

Sign in / Sign up

Export Citation Format

Share Document