scholarly journals Preliminary survey on diseases of Mango (Mangifera indica) under nursery conditions

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Priya Lokare ◽  
Sumia Fatima

Mango saplings go through the many insect pests, fungal, bacterial diseases during nursery condition and these symptoms will persist till flowering and fruiting period and result in the huge economic losses. Majority mango saplings couldn’t reach upto flowering and fruiting stage it dies in the nursery conditions. This is major threat to the nursery owners because mango saplings having great demand all over the year, therefore buyers refuse to purchase diseased saplings. In the recent years the disease becomes severe in nursery plants, on young leaves, symptoms appear as irregular black necrotic spots on both sides. Pathogen present on the infected leaves, twig and fallen leaves serves as the major source of infection and spreads by rain splashed conidia. Survey was carried out to know the prevalence of diseases in nursery conditions for that Sanket Nursery Wakadi, Taluka Rahta was selected. There were 4 varieties of mango found in Sanket Nursery that were, Keshar, Payari, Mallika and Ratna. During the survey various fungal and insect pest diseases were observed. Anthracnose symptoms caused by Colletotrichum gloeosporioides, little leaf notcher, coconut scale, mango gall midge, white mango scale, stem blight, powdery mildew, hairy caterpillar etc. were found in large scale.

2021 ◽  
Vol 25 (1) ◽  
pp. 1-22
Author(s):  
MP Ali ◽  
B Nessa ◽  
MT Khatun ◽  
MU Salam ◽  
MS Kabir

The damage caused by insect pest is the continual factor for the reduction of rice production. To date, 232 rice insect pest species are identified in Bangladesh and more than 100 species of insects are considered pests in rice production systems globally, but only about 20 - 33 species can cause significant economic loss. The major goal of this study is to explore all the possible ways of developed and proposed technologies for rice insect pests management and minimize economic losses. Insect pests cause 20% average yield loss in Asia where more than 90% of the world's rice is produced. In Bangladesh, outbreak of several insects such as rice hispa, leafroller, gallmidge, stem borers and brown planthopper (BPH) occurs as severe forms. Based on previous reports, yield loss can reach upto 62% in an outbreak situation due to hispa infestation. However, BPH can cause 44% yield loss in severe infestested field. To overcome the outbreaks in odd years and to keep the loss upto 5%, it is necessary to take some preventive measures such as planting of resistant or tolerant variety, stop insecticide spraying at early establishment of rice, establish early warning and forecasting system, avoid cultivation of susceptible variety and following crop rotation. Subsequent quick management options such as insecticidal treatment for specific insect pest should also be broadcasted through variety of information systems. Advanced genomic tool can be used to develop genetically modified insect and plants for sustainable pest management. In addition, to stipulate farmers not use insecticides at early crop stgae and minimize general annualized loss, some interventions including training rice farmers, regular field monitoring, digitalization in correct insect pests identification and their management (example; BRRI rice doctor mobile app), and demonstration in farmers field. Each technology itself solely or combination of two or more or all the packages can combat the insect pests, save natural enemies, harvest expected yield and contribute to safe food production in Bangladesh. Bangladesh Rice J. 25 (1) : 1-22, 2021


Zootaxa ◽  
2018 ◽  
Vol 4413 (2) ◽  
pp. 368
Author(s):  
KE-LONG JIAO ◽  
HAO WANG ◽  
DE-WEI WEI ◽  
JIAN-YOU MO ◽  
YUAN-HONG WANG ◽  
...  

Larvae of a previously unknown species of gall midge were found feeding on young fruit of mango, Mangifera indica (Anacardiaceae), in Guangxi Autonomous Region in southern China, causing severe damage to the crop. The new species is named Procontarinia fructiculi Jiao, Wang, Bu & Kolesik, its morphology is described, the basic biology is given, and the Cytochrome Oxidase subunit I (COI) mitochondrial gene segment is sequenced and compared to other congeners. Procontarinia contains now 16 described species, each feeding on mango. All but three species cause variously shaped galls on leaves, while P. mangiferae (Felt) malforms inflorescence and young leaves, and two species feed on fruit – P. frugivora Gagné causing deep lesions and P. fructiculi sp. nov. tunnel-like holes. Of the two fruit-feeding species, P. frugivora is confined to the Philippines while the new species has thus far been recorded only from southern China. 


2019 ◽  
Vol 2 (1) ◽  
pp. 238-243
Author(s):  
Anjali Gyawali ◽  
Bandana Regmi ◽  
Rameshwor Pudasaini ◽  
Namuna Acharya

A study on diversity and abundance of insects in rice field was conducted at farmer field of Lamahi, Dang during July to October in 2019. Insects were collected using sweep net and light trap. Overall, 414 insect specimen representing 11 families and 8 orders were collected during the period. Grasshopper (23.98%) with including all species was the most abundance insect found in rice field as it followed by brown plant hopper (16.62%). Among the eight insect orders captured Orthoptera (29.16%) was the most abundance insect order followed by Homoptera (16.62%). As the diversity of insect pest in this area may responsible economic losses was found which will be useful to adapt appropriate management practices to keep them at normal area. The presence of natural enemies should conserve to enhance the natural biological control of insect pests.


1980 ◽  
Vol 112 (6) ◽  
pp. 573-584 ◽  
Author(s):  
Oswald N. Morris

AbstractStrategies for the use of entomopathogenic viruses in the management of forest insect pests include the use of viruses by themselves or with other biocontrol or chemical agents applied simultaneously or separately at strategic time intervals. It is concluded that baculoviruses (nuclear polyhedrosis and granulosis viruses) have considerable potential as components of integrated forest insect pest management systems. The prime limiting factors in their large scale use at present are the high cost of virus production and underdevelopment of application technology. Their greatest potential will probably be realized when used as an indirect, or preventative, strategy with a view to preventing the occurrence of pest emergency situations.


2020 ◽  
Vol 115 (2) ◽  
pp. 283
Author(s):  
Insha YOUSUF ◽  
Abdul A. BUHROO

<p>Rose is the principal flower of the world floriculture industry that is being exclusively used as cut flower, potted plant and garden plant. It plays significant part in numerous industries viz. food, perfumery and cosmetic industries. About 96 % of women’s perfumes contain true Bulgarian rose oil. Roses are well acclimatized in Jammu &amp; Kashmir because of its suitable agro climatic conditions which can permit its large scale production and rose products produced in the state are at par with the international standards. But the aesthetic and commercial value of roses is greatly lowered by numerous insect pests resulting in low yield. However, its major pest include aphid species most notoriously Macrosiphum rosae that pose many challenges and threats to rose plant cultivation. Aphid colonies on roses result in reduction of medical value of the plant and cause economic losses to growers particularly during spring and summer season. In order to reduce the economic losses inflicted by rose aphid, it is necessary to study different biological parameters of this pest species so that an effective management plan can be formulated.</p>


2020 ◽  
pp. 1-10
Author(s):  
Nana Millicent Duduzile Buthelezi ◽  
Tieho Paulus Mafeo ◽  
Nhlanhla Mathaba

Preharvest factors such as poor orchard management and field sanitation can lead to pathological infection of the tree fruit being grown as well as insect pest infestation, resulting in poor postharvest fruit quality. Wind and hail damage may cause significant tree fruit abrasions and blemishes. Consequently, these preharvest factors may reduce yield and cause market and economic losses. One of the most successful methods used to manage tree fruit pathogens and insect infestation is the application of agrochemicals, predominantly fungicides and insecticides. However, this method has recently been criticized due to the adverse effects on field workers’ safety, consumers’ health, and the environment. The development and use of preharvest bagging are among the most environmentally friendly technologies intended for safe enhancement of tree fruit quality. The technique protects tree fruit against pathogens, insect pests, physiological disorders, agrochemical residues, fruit abrasions, sunburn, and bird damage, and it further modifies the microenvironment for fruit development with its various beneficial effects on its external and internal quality. Furthermore, because of the global restrictions of agrochemicals and social awareness, this technique provides extensive relief to growers and consumers. However, bagging is labor-intensive and expensive; therefore, its benefits or advantages and disadvantages must be thoroughly investigated if it is to be promoted commercially. This review examines the improvement of tree fruit quality by the application of preharvest bagging during early stages of fruit growth and development. The latest advances in the development and use of tree fruit bagging and its economic impact and cost–benefit ratio are discussed, as are recommendations for the formulation of bagging materials that could be valuable in the future.


1997 ◽  
Vol 7 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Michael B. Thomas ◽  
Jonathan H. Crane ◽  
James J. Ferguson ◽  
Howard W. Beck ◽  
Joseph W. Noling

The TFRUIT·Xpert and CIT·Xpert computerbased diagnostic programs can quickly assist commercial producers, extension agents, and homeowners in the diagnosis of diseases, insect pest problems and physiological disorders. The CIT·Xpert system focuses on citrus (Citrus spp.), whereas the TFRUIT·Xpert system focuses on avocado (Persea americana Mill.), carambola (Averrhoa carambola L.), lychee (Litchi chinensis Sonn.), mango (Mangifera indica L.), papaya (Carica papaya L.), and `Tahiti' lime (Citrus latifolia Tan.). The systems were developed in cooperation with research and extension specialists with expertise in the area of diagnosing diseases, disorders, and pest problems of citrus and tropical fruit. The systems' methodology reproduces the diagnostic reasoning process of these experts. Reviews of extension and research literature and 35-mm color slide images were completed to obtain representative information and slide images illustrative of diseases, disorders, and pest problems specific to Florida. The diagnostic programs operate under Microsoft-Windows. Full-screen color images are linked to symptoms (87 for CIT·Xpert and 167 for TFRUIT·Xpert) of diseases, disorders, and insect pest problems of citrus and tropical fruit, respectively. Users can also refer to summary documents and retrieve management information from the Univ. of Florida's Institute of Food and Agricultural Sciences extension publications through hypertext links. The programs are available separately on CD-ROM and each contains over 150 digital color images of symptoms.


2019 ◽  
Author(s):  
Liu Jie ◽  
Wang Liucheng ◽  
Zhou Guona ◽  
Liu Junxia ◽  
Gao Baojia

AbstractClostera anachoretais one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan and India, et al, and also the target insect of Cry1Ac toxin and Bt plants. In this study, by using the different dosages of Btcry1Ac toxin to feed larvae and analyzing the transcriptome data, we found six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2 and PKM, might be associated with Cry1Ac toxin. And PI3K-Akt pathway, which was highly enriched in DEGs and linked to several crucial pathways, including the B cell receptor signaling pathway, toll-like receptor pathway, and MAPK signaling pathway, might be involved in the recovery stage when response to sub-lethal Cry1Ac toxin. This is the first study conducted to specifically investigateC. anachoretaresponse to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathway that could be involved in Btcry1Ac resistance development or could serve as targets for biologically-based control mechanisms of this insect pest.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Sudhendu Sharma ◽  
P. S. Shera ◽  
Rabinder Kaur ◽  
K. S. Sangha

Abstract Background Biological alternatives to pesticides in agriculture do not harm non-targets organisms including natural enemies of insect pests. Experiments were conducted at sugarcane fields during 2015 to 2019 to assess large scale biocontrol practices, involving inundative releases of trichogrammatids against lepidopteran borers in comparison to conventional chemical-based farmers’ practice. Main body Eight releases each of Trichogramma chilonis Ishii and Trichogramma japonicum Ashmead were made at 50,000 ha−1 at 10 days interval for the management of sugarcane stem borer, Chilo infuscatellus Snellen and the sugarcane top borer, Scirpophaga excerptalis (Fabricius) (Lepidoptera: Crambidae), respectively. Likewise, 10–12 releases of T. chilonis were made at 50,000 ha−1 at 10 days interval for the management of sugarcane stalk borer, Chilo auricilius Dudgeon (Lepidoptera: Crambidae). The biocontrol intervention was compared with farmer’s practice (chemical control) in managing these borers. The results showed that farmers’ practices and biocontrol treated fields resulted in a lower incidence of C. infuscatellus (1.1, 2.9%) and S excerptalis (1.7, 3.9%) than the untreated control fields, wherein the mean per cent incidence of these borers (6.8, 8.5%) was significantly higher. The incidence of C. auricilius was also lower in augmented fields (2.8%) than untreated fields (7.3%). The yield data indicated that farmers adopting biocontrol practices were able to get comparable yield and benefit: cost ratio than farmers’ practice, both being better than untreated control. Moreover, in biocontrol fields, parasitism rate on the factitious host, Corcyra cephalonica Stainton cards was estimated. Conclusion Thus, the study highlights the significance of adoption of biocontrol-based technology over a long run to provide sustainable system of sugarcane insect pest management and economic benefits to the stakeholders.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Vaijayanti A. Tamhane ◽  
Surhud S. Sant ◽  
Abhilash R. Jadhav ◽  
Abdul R. War ◽  
Hari C. Sharma ◽  
...  

Abstract Background Spotted stem borer- Chilo partellus - a Lepidopteran insect pest of Sorghum bicolor is responsible for major economic losses. It is an oligophagous pest, which bores through the plant stem, causing ‘deadheart’ and hampering the development of the main cob. We applied a label-free quantitative proteomics approach on three genotypes of S. bicolor with differential resistance/ susceptibility to insect pests, intending to identify the S. bicolor’s systemic protein complement contributing to C. partellus tolerance. Methods The proteomes of S. bicolor with variable resistance to insect pests, ICSV700, IS2205 (resistant) and Swarna (susceptible) were investigated and compared using label-free quantitative proteomics to identify putative leaf proteins contributing to resistance to C. partellus. Results The multivariate analysis on a total of 967 proteins led to the identification of proteins correlating with insect resistance/susceptibility of S. bicolor. Upon C. partellus infestation S. bicolor responded by suppression of protein and amino acid biosynthesis, and induction of proteins involved in maintaining photosynthesis and responding to stresses. The gene ontology analysis revealed that C. partellus-responsive proteins in resistant S. bicolor genotypes were mainly involved in stress and defense, small molecule biosynthesis, amino acid metabolism, catalytic and translation regulation activities. At steady-state, the resistant S. bicolor genotypes displayed at least two-fold higher numbers of unique proteins than the susceptible genotype Swarna, mostly involved in catalytic activities. Gene expression analysis of selected candidates was performed on S. bicolor by artificial induction to mimic C. partellus infestation. Conclusion The collection of identified proteins differentially expressed in resistant S. bicolor, are interesting candidates for further elucidation of their role in defense against insect pests.


Sign in / Sign up

Export Citation Format

Share Document