scholarly journals Effects of Light, Soil Moisture, and Nutrition on Greenhouse Propagation of Twinflower

2017 ◽  
Vol 27 (6) ◽  
pp. 782-788
Author(s):  
Jonathan Foster ◽  
Stephanie Burnett ◽  
Lois Stack

Twinflower (Linnaea borealis) is an understory subshrub native to northern regions of North America, Europe, and Asia. Some growers report that this native plant is difficult to propagate. Although twinflower prefers partial shade and grows in areas with naturally variable moisture, there has been no greenhouse propagation work testing the impact of light or soil moisture conditions on root development of this plant or whether fertilizer impacts root development or root:shoot ratios during propagation. The goal of the first experiment was to propagate twinflower under a variety of daily light integrals (DLI)—27.6, 14.4, or 5.8 mol·m−2·d−1—and soil volumetric water content values (θ = volume of water ÷ volume of soil) 0.30, 0.35, 0.40, and 0.45 L·L−1, both parameters aimed at reproducing a range of natural conditions. The largest roots were grown at DLIs of 5.8 and 14.4 mol·m−2·d−1 and θ values of 0.30 and 0.35 L·L−1. In the second experiment, twinflower plants were grown in substrates with 0, 2.1, or 5.0 g·L−1 of incorporated controlled-release fertilizer (14N–6.1P–11.6K). Root and shoot dry weight increased at both treatment rates. The relative percentages of nitrogen, phosphorus, and potassium, and the total concentrations of manganese in parts per million, increased in foliage, as well. In both experiments, the source of cuttings impacted results. In the first experiment, cuttings taken from the source that was in the most light were least likely to survive (26% survival rate) compared with cuttings taken from stock plants growing in partial shade (65% or 82% survival rates, by site). In the second experiment, cuttings taken from source plants that were most intensively managed for removal of weeds and competing plants had the highest survival rate and the greatest shoot and root dry weight. We recommend propagating twinflower with moderate rates of fertility (i.e., 2.1 g·L−1 of incorporated controlled-release fertilizer) under some shade (5.8–14.4 DLI) and a moderate θ (0.30–0.35 L·L−1).

HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 152-159 ◽  
Author(s):  
Christopher J. Currey ◽  
Roberto G. Lopez

Our objectives were to quantify the effects of controlled-release fertilizer (CRF) on the growth, morphology, and tissue nutrient concentration of annual bedding plants during propagation. Unrooted cuttings of Angelonia angustifolia ‘AngelFace White’ and ‘Sundancer Pink’, Impatiens hawkeri ‘Celebrette Apricot’ and ‘Celebrette Rose Hot’, Nemesia fruticans ‘Bluebird’ and ‘Raspberry Sachet’, Pelargonium ×hortorum ‘Savannah Red’, and Petunia ×hybrida ‘Cascadia Marshmallow Pink’ and ‘Suncatcher Yellow’ were received from a commercial propagator. Cuttings were immediately stuck individually in cells containing soilless substrate supplemented with 0, 3, 6, 12, or 24 g·L−1 CRF (Osmocote Plus 15–3.9–10 3–4 month) and placed under clear mist water or cuttings were stuck in substrate containing no CRF and fertilized with water-soluble fertilizer beginning immediately after placing cuttings into propagation. Shoot dry mass of cuttings grown in substrates containing up to 12 or 24 g·L−1 CRF increased by up to 150% for some taxa compared with unfertilized cuttings. Incorporating CRFs into propagation substrates increased the concentration of nitrogen (N), phosphorus (P), and potassium (K) in tissues by up to 103%, 42%, and 137%, respectively, compared with unfertilized cuttings. Additionally, tissue nutrient concentrations for cuttings fertilized with 6 g·L−1 CRF or greater were similar to cuttings receiving water-soluble fertilizer (WSF). When the impact of CRF on growth and nutrient concentrations are taken together, our results indicate that CRF is a fertilization application technology that holds promise for use during propagation of herbaceous stem-tip cuttings.


2015 ◽  
Vol 25 (3) ◽  
pp. 370-379 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

The objective of this study was to determine the optimal controlled-release fertilizer (CRF) application rates or ranges for the production of five 2-gal nursery crops. Plants were evaluated following fertilization with 19N–2.6P–10.8K plus minors, 8–9 month CRF incorporated at 0.15, 0.45, 0.75, 1.05, 1.35, and 1.65 kg·m−3 nitrogen (N). The five crops tested were bigleaf hydrangea (Hydrangea macrophylla), ‘Green Velvet’ boxwood (Buxus ×), ‘Magic Carpet’ spirea (Spiraea japonica), ‘Palace Purple’ coral bells (Heuchera micrantha), and rose of sharon (Hibiscus syriacus). Most plant growth characteristics (i.e., growth index, plant height, leaf area, and shoot dry weight) were greater in high vs. low CRF treatments at the final harvest. Low CRF rates negatively impacted overall appearance and marketability. The species-specific CRF range recommendations were 1.05 to 1.35 kg·m−3 N for rose of sharon, 0.75 to 1.05 kg·m−3 N for ‘Magic Carpet’ spirea, and 0.75 to 1.35 kg·m−3 N for bigleaf hydrangea and ‘Green Velvet’ boxwood, whereas the recommended CRF rate for ‘Palace Purple’ coral bells was 0.75 kg·m−3 N. Overall, species-specific CRF application rates can be used to manage growth and quality of containerized nursery crops during production in a temperate climate.


2004 ◽  
Vol 14 (4) ◽  
pp. 474-478 ◽  
Author(s):  
Kimberly K. Moore

Growth of `Aladdin Peach Morn' petunia (Petunia × hybrida) and `Accent White' impatiens (Impatiens wallerana) was compared in substrates containing 0%, 30%, 60%, or 100% compost made from biosolids and yard trimmings and fertilized with Nutricote Total 13-13-13 (13N-5.7P-10.8K) Types 70, 100, and 140 incorporated at rates of 0.5x, 1x, 2x, or 3x (x = standard application rate for a medium-feeding crop). Petunia shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x increased as the percentage of compost in the substrate increased from 0% to 60% and then decreased, while shoot dry weight of plants fertilized with Type 70 incorporated at 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 30% and then decreased. Impatiens shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x and 1x also increased as the percentage of compost increased from 0% to 30% and then decreased, while shoot dry weight of plants fertilized at 2x and 3x decreased as the percentage of compost increased from 0% to 100%. Both petunia and impatiens shoot dry weight of plants fertilized with Type 100 and Type 140 incorporated at 0.5x, 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 60% and then decreased.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 462E-462
Author(s):  
T.L. Schultz ◽  
U.K. Schuch

Nitrate nitrogen is becoming a major pollutant in much of our nation's water supply. High levels of nitrate runoff are commonly found to occur from intense agricultural areas such as container nurseries. The objective of this study was to investigate combinations of liquid fertilizer (LF) plus controlled-release fertilizer (CRF) that would both minimize nitrate runoff and provide nutrient levels for optimum growth of Ilex verticillata L. The experiment was established in 1998 at the Iowa State Univ. Horticulture Research Station, Ames. Six fertilizer treatments were arranged in a randomized block design with eight replications. Treatment combinations of liquid fertilizer (LF) and controlled-release fertilizer (CRF) were [LF (mg/L)/CRF (g)]: 90/0, 90/8.5, 90/17, 180/0, 180/8.5, 180/17 (Peter's Excel 21-5-20 and Osmocote 18-6-12, 9-month release, respectively). Analysis of nitrate leaching showed that in 12 out of 16 weeks, the 180 mg/L LF treatments resulted in twice the amount of nitrate leached compared to the 90 mg/L LF. In 3 out of 16 weeks, treatments containing 0 g CRF leached significantly less nitrate than those containing 17 g CRF. None of the treatments produced a difference in total dry weight or caliper of Ilex verticlillata L. This data suggests that plant growth remains similar over a range of fertilizer input and higher rates of applied LF result in higher nitrate leaching.


FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 103
Author(s):  
Claudia Costella ◽  
Maristela Machado Araujo ◽  
Álavro Luís Pasquetti Berghetti ◽  
Suelen Carpenedo Aimi ◽  
Marllos Santos de Lima ◽  
...  

Corymbia citriodora and Eucalyptus dunnii are species of relevant importance due to the quality of the wood and growth potential in Southern Brazil. Therefore, we aimed to identify containers and doses of controlled-release fertilizer capable of enhancing the morphophysiological quality and growth of these species in the nursery, aiming for the proper management of these inputs. The seedlings were produced in two volumes of containers (50 e 110 cm³), filled with Sphagnum peat-based substrate, mixed with different doses of controlled-release fertilizer (CRF) NPK 15-09-12 (0, 3, 6, 9 e 12 g L-1 of substrates). In addition, the morphological (height, stem diameter, leaf area, dry weight of shoot, root, and total) and physiological (chlorophyll a and b index and quantum yield of the photosystem II) attributes were evaluated. The morphological attributes proved to be suitable indicators of the quality of C. citriodora and E. dunnii seedlings, allowing to recommend the container of 50 cm³ and the doses of 9.0 g L-1 of controlled-release fertilizer for both species. At the same time, the physiological variables evaluated were not responsive to the effect of the treatments.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 868B-868
Author(s):  
Jennifer Marohnic ◽  
Robert L. Geneve

Marigold seedlings were grown in four containers that differed in both volume and shape. Seedlings grown in 1.5-gal containers showed the greatest potential for shoot and root development 20 days after sowing. These seedlings had greater leaf area, shoot and root dry weight, and total root number and length compared to seedlings grown in 406 plug trays, 72-cell packs, or 6-inch containers. There was a positive correlation (r2 = 0.81) between cell volume and seedling growth as well as a positive correlation (r2 = 0.89) between container height with seedling growth. An attempt was made to separate the impact of container volume vs. container height on seedling growth. Containers were designed using acrylics to vary the container height while keeping the volume constant at 1500 cm3. There was a positive correlation (r2 = 0.87) between shoot and root dry weight with container height. The data suggest that both container volume and height contribute to overall seedling growth in marigold, but when container volume is not limiting, container height has a large impact on seedling development.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1956-1962
Author(s):  
Ji-Jhong Chen ◽  
Heidi Kratsch ◽  
Jeanette Norton ◽  
Youping Sun ◽  
Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.


2015 ◽  
Vol 33 (2) ◽  
pp. 66-75 ◽  
Author(s):  
Mary Jane Clark ◽  
Youbin Zheng

To determine the response of container-grown shrubs to controlled-release fertilizer (CRF) rate when grown in a temperate climate, Polyon® 19–04–10 + Minors, an 8–9 month CRF, was incorporated into growing substrates for ‘Gro-Low’ fragrant sumac (Rhus aromatica Aiton), ‘Goldmound’ spirea (Spiraea × bumalda Burv.) and ‘Bloomerang’® purple lilac (Syringa × ‘Penda’) transplants. Also, a 15–06–11 + Micros, a 10–12 month CRF, was incorporated into growing substrates for ‘Green Mound’ boxwood (Buxus × ‘Green Mound’), ‘Runyan’ yew (Taxus × media) and ‘Emerald’ white-cedar (arborvitae) (Thuja occidentalis L.) transplants, at six rates (0.15, 0.45, 0.75, 1.05, 1.35 and 1.65 kg·m−3 N; 0.25, 0.76, 1.26, 1.77, 2.28 and 2.78 lb·yd−3 N). We observed greater growth index, leaf area, and shoot dry weight at high vs. low CRF rates for the majority of species. Nutrient deficiency symptoms such as light green leaves were observed at low CRF rates for some species, including fragrant sumac, lilac and white-cedar. Optimal species-specific CRF application rates were 1.05 kg·m−3 N (1.77 lb·yd−3 N) for lilac and yew and 0.45 kg·m−3 N (0.76 lb·yd−3 N) for boxwood and white-cedar, while the optimal CRF ranges were 0.75 to 1.35 kg·m−3 N (1.26 to 2.28 lb·yd−3 N) for fragrant sumac and 0.75 to 1.05 kg·m−3 N (1.26 to 1.77 lb·yd−3 N) for spirea. Adjusting CRF application rates based on plant response may provide nursery growers with an efficient tool for managing nursery crop growth and production timing in the temperate climate.


2011 ◽  
Vol 21 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Kimberly Moore ◽  
Scott Greenhut ◽  
Wagner Vendrame

The objective of this study was to evaluate greenhouse techniques for the production of jatropha (Jatropha curcas). Jatropha seedlings were transplanted into 1-gal containers filled with bark mix, coir, or peat-based substrate and fertilized with 0, 4.1, 5.9, or 8.3 oz/ft3 of a 15N–4.05P–9.96K controlled-release fertilizer (CRF). Plants were watered every 2, 3, or 4 days for 80 days in the greenhouse. Jatropha plants grown in peat-based substrate had greater stem diameter and shoot dry weight (SDW) than plants grown in bark mix. For each growing substrate, plants fertilized with 8.3 and 5.9 oz/ft3 of CRF had greater SDW than plants fertilized with 4.1 and 0 oz/ft3 of CRF. Similarly, for all three substrates, plants irrigated every 2 or 3 days had greater SDW than plants irrigated every 4 days. Although jatropha has been classified as a low–nutrient and water requiring plant, the results of this study suggest that increased inputs of fertilizer and water produce larger plants. Further research needs to be conducted on the benefit of larger plants from the greenhouse on subsequent oil production in the field.


2016 ◽  
Vol 26 (5) ◽  
pp. 647-650
Author(s):  
Jong-Goo Kang ◽  
Rhuanito Soranz Ferrarezi ◽  
Sue K. Dove ◽  
Geoffrey M. Weaver ◽  
Marc W. van Iersel

Abscisic acid (ABA) is a plant hormone involved in regulating stomatal responses to environmental stress. By inducing stomatal closure, applications of exogenous ABA can reduce plant water use and delay the onset of drought stress when plants are not watered. However, ABA can also cause unwanted side effects, including chlorosis. Pansy (Viola ×wittrockiana) has been shown to be particularly susceptible to ABA-induced chlorosis. The objective of this study was to determine if fertilization rate affects the severity of ABA-induced chlorosis in this species. ‘Delta Premium Pure Yellow’ pansy seedlings were fertilized with controlled-release fertilizer incorporated at rates from 0 to 8 g·L−1 of substrate. When plants had reached a salable size, half the plants were sprayed with a solution containing 1 g·L−1 ABA, whereas the other plants were sprayed with water. Leaf chlorophyll content was monitored for 2 weeks following ABA application. Leaf chlorophyll content increased greatly as fertilizer rate increased from 0 to 2 g·L−1, with little increase in leaf chlorophyll at even higher fertilizer rates. ABA induced chlorosis, irrespective of the fertilizer rate. Plant dry weight was lowest when no controlled-release fertilizer was incorporated, but similar in all fertilized treatments. ABA treatment reduced shoot dry weight by ≈24%, regardless of fertilization rate. This may be due to ABA-induced stomatal closure, which limits carbon dioxide (CO2) diffusion into the leaves. We conclude that ABA sprays induce chlorosis, regardless of which fertilizer rate is used. However, because leaf chlorophyll concentration increases with increasing fertilizer rates, higher fertilizer rates can mask ABA-induced chlorosis.


Sign in / Sign up

Export Citation Format

Share Document