scholarly journals Sucrose Metabolism in Ripening Muskmelon Fruit as Affected by Leaf Area

1990 ◽  
Vol 115 (5) ◽  
pp. 798-802 ◽  
Author(s):  
Natalie L. Hubbard ◽  
D. Mason Pharr ◽  
Steven C. Huber

Muskmelon (Cucumis melo L.) fruit lack a stored starch reserve and therefore depend on translocated photoassimilate from the leaf canopy for sugar accumulation during ripening. The influence of canopy photosynthesis on sucrose' accumulation within muskmelon fruit mesocarp was examined. Canopy photosynthetic activities were estimated in a sweet and a nonsweet genotype. Photosynthetic rate of the nonsweet genotype, on a per-plant basis, was only 56% of that of the sweet genotype. The effect of limiting leaf area of the sweet genotype on carbohydrate concentrations and sucrose metabolizing enzymes within the fruit was evaluated. A 50% reduction of leaf area 8 days before initiation of fruit sucrose accumulation resulted in canopy photosynthesis similar to that of the nonsweet genotype. Reduced photosynthetic activity resulted in slightly lower soluble-carbohydrate concentration in the fruit; however, fruit sucrose concentration was three times higher than that reported previously for the nonsweet genotype. The extent to which `fruit sucrose phosphate synthase (SPS) activity increased during maturation was diminished by leaf removal. Acid invertase activity declined in all fruit in a similar manner irrespective of defoliation. A reduction of leaf area of a sweet genotype reduced sucrose accumulation within the fruit. Lower fruit sucrose concentration was associated with lower concentration of raffinose saccharides and lower SPS activity within the fruit. Additionally, insufficient assimilate supply was judged not to be the factor responsible for low sucrose accumulation in a nonsweet genotype.

2001 ◽  
Vol 126 (6) ◽  
pp. 676-680 ◽  
Author(s):  
Yasuyoshi Hayata ◽  
Xin-Xian Li ◽  
Yutaka Osajima

To clarify the cause of low sucrose accumulation in seedless `Crest Earl's' netted muskmelon [Cucumis melo L. (Reticulatus Group)] fruit induced by CPPU, the activity level of sucrose metabolizing enzymes was compared between seeded and seedless fruit. CPPU promoted growth of the ovary in both pollinated and nonpollinated flowers until 10 days after anthesis (DAA), and thereafter the growth rate of nonpollinated fruit was lower than in the controls. Sucrose accumulation of seedless fruit remained lower than in seeded fruit, but there was no difference in fructose and glucose content between seeded and seedless fruit. Acid invertase activity declined sharply 20 DAA in seeded and seedless fruit, and was hardly detectable at 35 DAA, when sucrose accumulation began. Neutral invertase (NI) activity in both seeded and seedless fruit decreased from 20 DAA until 35 DAA; thereafter, NI activity in seeded fruit remained relatively constant, with a small but insignificant increase in maturity. Sucrose synthase (SS-c: sucrose cleavage direction) activity in seeded fruit decreased from 20 to 30 DAA, and then increased as fruit matured, while SS-c activity in seedless fruit did not change during development. Sucrose phosphate synthase (SPS) activity in seeded fruit increased from 25 to 30 DAA and remained relatively constant until harvest. SPS activity in seedless fruit declined gradually from 30 to 45 DAA, then remained at a low level. Sucrose synthase (SS-s: sucrose synthesis direction) activity in seeded fruit increased rapidly after 30 DAA, concomitant with sucrose accumulation. In contrast, SS-s activity in seedless fruit increased only slightly after 30 DAA indicating levels of SS-s activity are closely related to sucrose accumulation in parthenocarpic seedless muskmelons. Chemical name used: [1-(2-chloro-4-pyridyl)-3-phenylurea] (CPPU).


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 540a-540
Author(s):  
R.L. Darnell ◽  
R. Cano-Medrano ◽  
K.E. Koch

Variability in sucrose levels and metabolism in ripe fruit of several Vaccinium species were examined. The objective was to determine if sufficient variability for fruit sucrose accumulation was present in existing populations to warrant attempts to breed for high-sucrose fruit, which potentially would be less subject to bird predation. Three-fold differences in fruit sucrose concentration were found among species, ranging from 19 to 24 mg·(g fw)-1 in V. stamineum and V. arboreum to about 7 mg·(g fw)-1 in cultivated blueberry (V. ashei and V. corymbosum) and V. darrowi. Soluble acid invertase activity was negatively correlated with fruit sucrose concentration. There was no apparent correlation between fruit sugar concentration and either sucrose phosphate synthase or sucrose synthase activities, both of which were low for all species studied. The degree of variability in fruit sucrose accumulation among Vaccinium species supports the feasibility of developing high sucrose fruit, which would be a potentially valuable addition to current strategies of minimizing crop losses to birds.


1992 ◽  
Vol 117 (2) ◽  
pp. 274-278 ◽  
Author(s):  
Takaya Moriguchi ◽  
Kazuyuki Abe ◽  
Tetsuro Sanada ◽  
Shohei Yamaki

Soluble sugar content and activities of the sucrose-metabolizing enzymes sucrose synthase (SS) (EC 2.4.1.13), sucrose-phosphate synthase (SPS) (EC 2.4.1.14), and acid invertase (EC 2.4.1.26) were analyzed in the pericarp of fruit from pear cultivars that differed in their potential to accumulate sucrose to identify key enzymes involved in sucrose accumulation in Asian pears. The Japanese pear `Chojuro' [Pyrus pyrifolia (Burro. f.) Nakai] was characterized as a high-sucrose-accumulating type based on the analysis of mature fruit, while the Chinese pear `Yali' (P. bretschneideri Rehd.) was a low-sucrose-accumulating type throughout all developmental stages. The activity of SS and SPS in `Chojuro' increased during maturation concomitant with sucrose accumulation, whereas the activity of these enzymes in `Yali' did not increase during maturation. The activity of SS and SPS in the former were seven and four times, respectively, higher than those in the latter at the mature stage. Further, among 23 pear cultivars, SS activity was closely correlated with sucrose content, while SPS activity was weakly correlated. Soluble acid invertase activity in `Chojuro' and `Yali' decreased with fruit maturation, but the relationships between soluble invertase activity and sucrose content were not significant. The results indicate that SS and SPS are important determinants of sucrose accumulation in Asian pear fruit and that a decrease of soluble acid invertase activity is not absolutely required for sucrose accumulation.


2010 ◽  
Vol 135 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Jun Matsumoto ◽  
Hideyuki Goto ◽  
Yasutaka Kano ◽  
Akira Kikuchi ◽  
Hideaki Ueda ◽  
...  

To determine the relationship among cell size, acid invertase (AI) activity, sucrose phosphate synthase (SPS) activity, and sucrose accumulation in melon (Cucumis melo L.) during early development [from 6 to 16 days after anthesis (DAA)], fruit were heated at night to a minimum of 20 °C. Cells of heated fruit were larger than those of control fruit at 16 DAA but smaller at 50 DAA. AI activity was lower and SPS activity was higher in heated than in control fruit up to 26 DAA. Sucrose, glucose, and fructose contents at 26 and 50 DAA were higher in heated than in control fruit. Heating caused cells to reach mature size earlier than those of control fruit, and maturity was accompanied by earlier decline in AI activity and an earlier increase in SPS activity that promoted soluble sugar accumulation.


2010 ◽  
Vol 37 (12) ◽  
pp. 1161 ◽  
Author(s):  
Luguang Wu ◽  
Robert G. Birch

Transgenic sugarcane (Saccharum officinarum L. interspecific hybrids) line N3.2 engineered to express a vacuole-targeted sucrose isomerase was found to accumulate sucrose to twice the level of the background genotype Q117 in heterotrophic cell cultures, without adverse effects on cell growth. Isomaltulose levels declined over successive subcultures, but the enhanced sucrose accumulation was stable. Detailed physiological characterisation revealed multiple processes altered in line N3.2 in a direction consistent with enhanced sucrose accumulation. Striking differences from the Q117 control included reduced extracellular invertase activity, slower extracellular sucrose depletion, lower activities of symplastic sucrose-cleavage enzymes (particularly sucrose synthase breakage activity), and enhanced levels of symplastic hexose-6-phosphate and trehalose-6-phosphate (T6P) in advance of enhanced sucrose accumulation. Sucrose biosynthesis by sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP) was substantially faster in assays conducted to reflect the elevation in key allosteric metabolite glucose-6-phosphate (G6P). Sucrose-non-fermenting-1-related protein kinase 1 (SnRK1, which typically activates sucrose synthase breakage activity while downregulating SPS in plants) was significantly lower in line N3.2 during the period of fastest sucrose accumulation. For the first time, T6P is also shown to be a negative regulator of SnRK1 activity from sugarcane sink cells, hinting at a control circuitry for parallel activation of key enzymes for enhanced sucrose accumulation in sugarcane.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 99-104 ◽  
Author(s):  
Pankaj K. Bhowmik ◽  
Ken-ichi Tamura ◽  
Yasuhara Sanada ◽  
Kazuhiro Tase ◽  
Toshihiko Yamada

Abstract Sugar metabolism is one of the important factors involved in winter hardiness and since the discovery of sucrose biosynthesis, considerable advances have been made in understanding its regulation and crucial role. This investigation examined the changes in activities of sucrose metabolizing enzymes and sugar content during cold hardening of perennial ryegrass (Lolium perenne L.). Changes in acid invertase (AI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) along with all the three soluble sugars glucose, fructose and sucrose were measured in leaves and stem base tissue during cold acclimation. Although fructans were the predominant carbohydrate the changes in glucose, fructose and sucrose were significant. All the three soluble sugars in both leaf and stem tissues started to decrease from the first day and continued up to day 7 and thereafter started to increase until day 28. AI in the soluble fraction showed a higher activity than that in the cell wall bound fraction. In both the leaf and stem bases soluble AI activity increased during the first week and after that it started to decrease gradually. On the other hand both the SS and SPS increased gradually throughout the acclimation period. Sucrose content was negatively correlated with AI and positively correlated with SS and SPS accounting well for the relation between the substrate and enzyme activity. These results suggest that AI, SS and SPS in ryegrass are regulated by cold acclimation and play an important role in sugar accumulation and acquisition of freezing tolerance


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 857C-857
Author(s):  
Alireza Talaie* ◽  
Vali Rabiei ◽  
Ali Ebadi

Grapevine under arid and semi-arid are subjected to low soil water availability, accompanied by high levels of temperature and severe transpiration in the summer period. In spite of their deep root system, severe water stress may occur during that period. Therefore, study of morphological and physiological responses of grapevine cultivars to water stress, especially during the different phenological stages, are necessary. The effect of water deficit stress on morphological and physiological responses of four Iranian grapevine cultivars (Vitis vinifera L. cvs. Bidaneh Sephid, Yaghooti Shiraz, Khoshnav, and Siaveh) were studied. This investigation was conducted as a factorial experiment in a complete randomized block design with four replications. In this study, 1-year-old own rooted vines were planted outdoor in plastic bags. Water stress was begun 115 days after bud break and contained for 2 months. Some vegetative and biochemical characters of leaves were evaluated; photosynthesis and gas exchange was measured. The results of analysis of variance indicated that water deficit stress decreased total dry weight, root dry weight, leaf area, non soluble carbohydrate concentration, and chlorophyll content. The reduction of leaf area in `Yaghooti Shiraz' and total dry weight and root dry weight in `Bidaneh Sephid' were higher than two other cultivars. Under water deficit stress condition, the soluble carbohydrate concentration and proline content in grapevine cultivars increased. Net photosynthesis and gas exchange rate were markedly reduced in water deficit stressed vines.


2013 ◽  
Vol 40 (4) ◽  
pp. 355 ◽  
Author(s):  
Sylvain Gutjahr ◽  
Anne Clément-Vidal ◽  
Armelle Soutiras ◽  
Nicole Sonderegger ◽  
Serge Braconnier ◽  
...  

Sugar accumulation in sorghum (Sorghum bicolor (L.) Moench) stems is a complex trait that is particularly plastic in response to photoperiod. This study investigated sucrose accumulation in a sterile (no grain filling) and fertile near-isogenic line of the photoperiod-sensitive cultivar IS2848 in two greenhouse experiments. Variable phenology was induced by applying a short (12-h PP) and a long (13-h PP) photoperiod. Dynamics of plant growth, phenology, sugar accumulation and related enzyme activities in internodes were investigated. Under 13-h PP, plants flowered 28 days later and attained threefold higher sucrose concentration at anthesis compared with those under 12-h PP. Sucrose accumulation in individual internodes was driven by organ physiological age, not by plant phenology. Competition with grain filling was marginal but greater under 12-h PP (i.e. when sucrose accumulation in internodes occurred after flowering). Enzyme activities showed marked developmental patterns but contributed little to explaining differences between treatments and genotypes. The study demonstrates that sucrose storage physiology in sweet sorghum resembles that of sugarcane (Saccharum spp.) but is more complex due to photoperiod effects on phenology. It confirms the field results on 14 sorghum genotypes contrasting for phenology and photoperiod sensitivity presented in a companion paper. Perspectives for developing sorghum ideotype concepts for food and fuel crops are discussed.


2007 ◽  
Vol 132 (5) ◽  
pp. 704-712 ◽  
Author(s):  
Yosef Burger ◽  
Arthur A. Schaffer

The relationship between sugar accumulation and sucrose metabolism enzyme activities was studied among seven genotypes of Cucumis melo L., covering the broad genetic range of sucrose accumulation found in the species. The primary determinant correlated with sucrose levels was the genetic variation for developmental loss of soluble acid invertase (AI) activity. Sucrose accumulation in the developing fruit began only when AI activity declined to less than an experimentally determined threshold value, and continued until removal of the fruit from the plant. In addition, the activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), and neutral invertase (NI) were all positively correlated with sucrose accumulation among the genotypes. The low-sucrose-accumulating genotypes were characterized by low activities of each of the three enzymes, irrespective of their invertase activities. Final sucrose content was best predicted for each genotype by the number of days the fruit remained attached to the plant while characterized by “sucrose accumulation metabolism,” which was characterized primarily by AI activity less than threshold values, together with SPS, SuSy, and NI activities higher than threshold levels.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 761A-761
Author(s):  
Justine E. Vanden Heuvel*

Fruiting and vegetative greenhouse-grown cranberry uprights (Vaccinium macrocarpon Ait.) were subjected to four defoliation levels (0%, 25%, 50%, 75%) on one of three dates during the growing season. Seven days following defoliation, vines were destructively harvested and carbohydrate concentration was quantified using HPLC. Prior to new growth, defoliation did not affect the concentration of total non-structural carbohydrates (TNSC) in the uprights, or the partitioning of water-soluble (i.e., sucrose, glucose, fructose) to ethanol-insoluble (i.e., starch) carbohydrates, even though uprights with lower leaf areas had higher net CO2 assimilation rates (A). At 2 weeks post-bloom, TNSC concentration was reduced in defoliated vines, although A was not affected by defoliation. Prior to harvest, TNSC concentration was reduced in vines subjected to defoliation while A was unaffected, although the positive relationship between soluble carbohydrate concentration and leaf area per upright reached an asymptote, while the direct relationship between starch concentration and leaf area remained linear. Carbohydrate production and partitioning of an upright was unaffected by the presence of a single fruit throughout the experiment. These results suggest that carbohydrate production in cranberry uprights may be sink-limited prior to fruiting, and then becomes source-limited as the growing season progresses.


Sign in / Sign up

Export Citation Format

Share Document