scholarly journals Increased CO2 and Light Promote in Vitro Shoot Growth and Development of Theobroma cacao

1991 ◽  
Vol 116 (3) ◽  
pp. 585-589 ◽  
Author(s):  
Antonio Figueira ◽  
Anna Whipkey ◽  
Jules Janick

Axillary shoots of cacao (Theobroma cacao L.), induced in vitro with cytokinins (BA or TDZ), elongated and produced leaves only in the presence of cotyledons and/or roots. Detached axillary shoots, which do not grow in `vitro under conventional tissue culture protocols, rooted with auxin and developed normally in vivo. Detached axillary shoots from cotyledonary nodes and single-node cuttings from mature plants were induced to elongate and produce normal leaves in the presence of 20,000 ppm CO2 and a photosynthetic photon flux density (PPFD) of 150 to 200 μmol·s-1·m-2. Subculture nodal cuttings continued to elongate and produce leaves under elevated CO2 and light levels, and some formed roots. Subculture of microcuttings under CO2 enrichment could be the basis for a rapid system of micropropagation for cacao. Chemical names used: N -(phenylmethyl) -1 H -purin-6-amine (BA); 1 H -indole-3-butyric `acid (IBA); α -naphthaleneacetic acid (NAA); thidiazuron (TDZ).

OENO One ◽  
1998 ◽  
Vol 32 (2) ◽  
pp. 91
Author(s):  
Francesco Iacono ◽  
Lucia Martinelli

<p style="text-align: justify;">The influence of genotype on leaf gas exchange was investigated for <em>Vitis riparia</em> and <em>Vitis rupestris</em> plants cultured <em>in vivo</em> and <em>in vitro</em>. Gas exchange was measured at constant temperature and photosynthetic photon flux density and at varying relative humidity from 75 p. cent to 65 p. cent.</p><p style="text-align: justify;">Differences of transpiration and CO<sub>2</sub> assimilation rates between genotypes were observed that did not depend upon conditions. Water use efficiency was strongly controlled by the genotype.</p><p style="text-align: justify;">Linear correlations between assimilation, transpiration and relative humidity were used to estimate extra stomatal (cuticular) and stomatal transpiration of <em>in vitro</em> plants. Cuticular transpiration of in vitro plants was also measured directly during the darkness. Our results confirmed the indirect estimates of cuticular transpiration elaborated with a linear regression model. Results also show that cuticular transpiration of <em>in vitro</em> grown plants may be relevant and is strongly influenced by the genotype. Similarly, the sensitivity of plantlets to transplantation from <em>in vitro</em> to <em>in vivo</em> conditions may be strongly related by the genotype.</p>


2021 ◽  
Vol 22 (1) ◽  
pp. 17-30
Author(s):  
Nataliya Dimitrova ◽  
Lilyana Nacheva ◽  
Małgorzata Berova ◽  
Danuta Kulpa

In vitro micropropagation of plants is highly useful for obtaining large quantities of planting material with valuable economic qualities. However, plantlets grow in vitro in a specific environment and the adaptation after the transfer to ex vitro conditions is difficult. Therefore, the acclimatization is a key step, which mostly determines the success of micropropagation. The aim of this investigation was to study the effect of the biofertlizer Lumbrical on ex vitro acclimatization of micropropagated pear rootstock OHF 333 (Pyrus communis L.). Micropropagated and rooted plantlets were potted in peat and perlite (2:1) mixture with or without Lumbrical. They were grown in a growth chamber at a temperature of 22&plusmn;2 &deg;C and photoperiod of 16/8 hours supplied by cool-white fluorescent lamps (150 &micro;mol m-2 s-1 Photosynthetic Photon Flux Density, PPFD). The plants were covered with transparent foil to maintain the high humidity, and ten days later, the humidity was gradually decreased. Biometric parameters, anatomic-morphological analyses, net photosynthetic rate and chlorophyll a fluorescence (JIP test) were measured 21 days after transplanting the plants to ex vitro conditions. The obtained results showed that the plants, acclimatized ex vitro in the substrate with Lumbrical, presented better growth (stem length, number of leaves, leaf area and fresh mass) and photosynthetic characteristics as compared to the control plants. This biostimulator could also be used to improve acclimatization in other woody species


2017 ◽  
Vol 40 (1) ◽  
pp. 32-38
Author(s):  
Phan Xuan Binh Minh ◽  
Bui Thi Thanh Phuong ◽  
Pham Huong Son ◽  
Tran Minh Hoi ◽  
Nguyen Thi Phuong Lan ◽  
...  

A. annamensis and A. roxburghii belong to Orchidaceae family that has medicinal and ornamental plant value. They are in extinct endangered plants in wild due to the over- collected and loss of the suitable habitats. Using the LED lighting source for culture these species in in vitro condition to optimize the culture conditions, reduction of the production cost, especially electric bill for air-corditionning, lighting. In recent years, the trial applied LED which has the feature of energy saving, small size and a longer operating life, for plant production has started. In this study, LED illumination sources are in four different wavelengths of λ= 430- 470 nm; λ= 470-510 nm; λ= 510-560 nm; λ= 560-600 nm and white fluorescent lamp as control with light intensity photosynthetic photon flux density (PPFD) of 40 µmol/m2/s photon used to study their effects on the growth and development of A. annamensis and A. roxburghii species. After 8 weeks of implementing, the results showed that the LEDs of λ= 470-510 nm were suitable for the growth and development for A. roxburghii shoots while for A. annamensis, λ = 430- 470 nm were most suitable for budding and λ= 470-510 nm for shoot growth. Citation: Phan Xuan Binh Minh, Bui Thi Thanh Phuong, Pham Huong Son, Tran Minh Hoi, Nguyen Thi Phuong Lan, Vu Thi Thao, 2018. The effects of linght emitting diode lighting on growth and development of A. annanesis and A. roxburghii in vitro cultured shoots. Tap chi Sinh hoc, 40(1): x-xx. DOI: 10.15625/0866-7160/v40n1.10636. *Corresponding author: [email protected] Received 23 August 2017, accepted 2 December 2017


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 757-763 ◽  
Author(s):  
Meijun Zhang ◽  
Duanduan Zhao ◽  
Zengqiang Ma ◽  
Xuedong Li ◽  
Yulan Xiao

Momordica grosvenori plantlets were cultured in vitro for 26 d on sucrose- and hormone-free Murashige and Skoog (MS) medium with four levels of photosynthetic photon flux density (PPFD), namely 25, 50, 100, or 200 μmol·m−2·s−1, and a CO2 concentration of 1000 μmol·mol−1 in the culture room [i.e., photoautotrophic micropropagation (PA) treatments]. The control treatment was a photomixotrophic culture using MS medium containing sucrose and NAA with a CO2 concentration of 400 μmol·mol−1 in the culture room and a PPFD of 25 μmol·m−2·s−1. Based on the results, a second experiment was conducted to investigate the effects of α-naphthaleneacetic acid (NAA) and sucrose on callus formation. For this, plantlets were grown in the absence and presence of either NAA or sucrose. Compared with the control, the PA plantlet had a well-developed rooting system, better shoot, greater chlorophyll content, and higher electron transport rate and the ex vitro survival percentage was increased by 31%. Both sucrose and NAA stimulated callus formation on the shoot bases of control plantlets, whereas calluses did not form on the plantlets grown in sucrose- and hormone-free medium. The stronger light intensities increased the fresh and dry weight of plantlets. A PPFD of 100 μmol·m−2·s−1 was more suitable for the growth of M. grosvenori plantlets. Therefore, photoautotrophic plantlets grown at high light intensities would be better suited to the intense irradiance found in sunlight.


2020 ◽  
Vol 22 (1) ◽  
pp. 133
Author(s):  
Jie Xiao ◽  
Yoo Gyeong Park ◽  
Ge Guo ◽  
Byoung Ryong Jeong

Sorbus commixta is a valuable hardwood plant with a high economical value for its medicinal and ornamental qualities. The aim of this work was to investigate the effects of the iron (Fe) source and medium pH on the growth and development of S. commixta in vitro. The Fe sources used, including non-chelated iron sulfate (FeSO4), iron ethylenediaminetetraacetic acid (Fe-EDTA), and iron diethylenetriaminepentaacetic acid (Fe-DTPA), were supplemented to the Multipurpose medium with a final Fe concentration of 2.78 mg·L−1. The medium without any supplementary Fe was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70. The experiment was conducted in a culture room for six weeks with 25 °C day and night temperatures, and a 16-h photoperiod with a light intensity of 50 mmol·m−2·s−1 photosynthetic photon flux density (PPFD). Both the Fe source and pH affected the growth and development of the micropropagated plants in vitro. The leaves were greener in the pH 4.70 and 5.70 treatments. The tissue Fe content decreased with the increase of the medium pH. The leaf chlorophyll content was similar between plants treated with FeSO4 and those with Fe-EDTA. The numbers of the shoots and roots of plantlets treated with FeSO4 were 2.5 and 2 times greater than those of the control, respectively. The fresh and dry weights of the shoot and the root were the greatest for plants treated with Fe-EDTA combined with pH 5.70. The calcium, magnesium, and manganese contents in the plantlets increased in the pH 5.70 treatments regardless of the Fe source. Supplementary Fe decreased the activity of ferric chelate reductase. Overall, although the plantlets absorbed more Fe at pH 4.70, Fe-EDTA combined with pH 5.70 was found to be the best for the growth and development of S. commixta in vitro.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1163-1165 ◽  
Author(s):  
M.E. Oscar Mokotedi ◽  
M. Paula Watt ◽  
Norman W. Pammenter ◽  
Felicity C. Blakeway

Multiple shoots of two Eucalyptus grandis Hill ex Maid. × E. nitens (Deane & Maid.) Maid. clones (GN121 and GN107) generated from axillary buds were used for in vitro rooting studies. The highest rooting rates in clones GN121 (75%) and GN107 (65%) were achieved on modified 1/4-strength Murashige and Skoog (MS) (1962) medium (Ca2+ and Mg2+ levels as for 3/4-strength MS), 0.5 μm IBA, 0.4 μm biotin, 0.2 μm calcium pantothenate, 0.04 m sucrose and 0.4% (w/v) Gelrite®. The optimal culture conditions were an initial 72-h dark incubation period followed by a 16-hour photoperiod at a photosynthetic photon flux density (PPFD) of 37 μmol·m-2·s-1 and 23 °C day/21 °C night for 7 days, after which the PPFD and temperature were increased to 66 μmol·m-2·s-1 and 27 °C day/21 °C night for 18 days. Plantlets were acclimatized with survival rates of 78% for GN121 and 58% for GN107 after 28 days. Chemical name used: indole-3-butyric acid (IBA).


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1482-1486 ◽  
Author(s):  
Huan Xiong ◽  
He Sun ◽  
Feng Zou ◽  
Xiaoming Fan ◽  
Genhua Niu ◽  
...  

Castanea henryi is an important woody grain tree species native to China. The objective of the current study was to find the suitable plant growth regulators (PGRs) and the optimal concentrations for direct organogenesis by using axillary shoots and cotyledonary nodes. Seeds were collected from the field, sterilized, and germinated in vitro. Axillary shoots and cotyledonary nodes of 3-week-old seedlings were used as explants. To find the suitable PGR for adventitious shoot induction, 0.5 mg·L–1 6-benzylaminopurine (6-BA), 0.1 mg·L–1 indole-3-acetic acid (IAA), 0.1 mg·L–1 2,4-dichlorophenoxyacetic acid (2,4-D), or 0.1 mg·L–1 1-naphthaleneacetic acid (NAA) was supplemented to Murashige and Skoog (MS) medium containing 0.65% agar and 3% sucrose. A high induction percentage of adventitious shoots (85.67%) was obtained from cotyledonary nodes supplemented with 0.1 mg·L–1 2,4-D. The type of explant influenced shoot proliferation rates and quality. Apical explants produced more and longer shoots than nodal segments. For shoot multiplication, 1 mg·L–1 6-BA + 0.05 mg·L–1 indole-3-butyric acid (IBA) supplemented with MS medium produced 12.33 and 6.25 shoots per explant, respectively, from apical and nodal explants. For shoot elongation and strengthening, 2 mg·L–1 6-BA + 0.05 mg·L–1 IBA supplemented with MS medium was the best combination, producing shoots with a mean length of 3.50 cm, a diameter of 0.46 cm, and about eight leaves per shoot. The greatest rooting of 76.70% and 11.33 roots per shoot was achieved when cultured in MS medium supplemented with 3.5% perlite + 1.5 mg·L–1 IBA. For acclimatization of the rooted plantlets in the greenhouse, a survival rate of 80% was achieved. This protocol—from multiplication to acclimation—is helpful to realize mass propagation of high-quality trees of chinquapin for increasing production and nut quality.


Sign in / Sign up

Export Citation Format

Share Document