scholarly journals Reproductive Characteristics of Pitayo (Stenocereus queretaroensis) and their Relationships with Soluble Sugars and Irrigation

1995 ◽  
Vol 120 (6) ◽  
pp. 1082-1086 ◽  
Author(s):  
Eulogio Pimienta-Barrios ◽  
Park S. Nobel

Flower and fruit production by the columnar cactus, Stenocereus queretaroensis (Weber) Buxbaum, occurred during the dry season in the late winter and spring, and the relatively small annual stem extension occurred primarily during the fall. Thus, reproductive growth does not directly compete with vegetative growth for resources such as reducing sugars, which increased during the wet summer season, a period when total sugars were decreasing. Stem extension, reproductive demography, fruit quality, seed size, and seed quality were not influenced by irrigation. Final fruit size and seed germination, however, were enhanced by applying water. The times from flower bud differentiation to flower opening and from anthesis to fruit ripening were relatively short and unaffected by irrigation.

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Hao Wang ◽  
Xiuying Xia ◽  
Lijia An

Bud dormancy of deciduous fruit trees is a complex process that allows trees to survive long periods in adverse conditions during winter. Dormancy is a major obstacle for both fruit production in mild winter areas and off-season culture of fruit trees in protection facilities. It is very economically advantageous to be able to control the time point of bud break and consequently harvest in crops with high returns and short harvest seasons like blueberry (Vaccinium spp.). Hydrogen cyanamide (H2CN2 (HC)) treatment is an effective method to promote dormancy release and synchronize bud break in perennial deciduous fruit trees, including blueberry. However, there are few systematic studies of the metabolic changes that occur during HC-induced bud breaking. In this study, the metabolome of blueberry buds under forced conditions following HC and water treatment (control) was analyzed using gas chromatography paired with time-of-flight mass spectrometry (GC–TOFMS) technology. A total of 252 metabolites were identified and 16 differential metabolites (VIP > 1, p < 0.05) were detected. The levels of several soluble sugars (fructose, glucose, maltose), organic acids (citric acid, alpha-ketoglutaric, succinic acid), and amino acids (aspartic acid, glutamic acid, phenylalanine) were upregulated, while tyrosine, tryptophan, and asparagine were significantly downregulated in HC-treated buds when compared with control buds. The synthesis and accumulation of phenylpropanoids (salicin, 4-vinylphenol, neohesperidin) were also promoted by HC. These results suggest that alteration of carbohydrate and amino acid metabolism, tricarboxylic acid (TCA) cycle increase, and phenylpropanoid accumulation were crucial in HC-promoted bud breaking in blueberry. This research extends our understanding of the mechanisms involved in dormancy release induced by HC and provides a theoretical basis for applying HC to accelerate bud break.


Sociobiology ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. e5906
Author(s):  
Miriam Gimenes ◽  
Laene Silva Araujo ◽  
Anderson Matos Medina

Pollination is an ecological process that relies on the matching traits of flower visitors and flowers. Morphology, behavior, and temporal patterns play essential roles in mediating the interactions between plants and floral visitors. This study analyzed the temporal aspects of visitors and flowers interaction and the possible adjustment between both organisms.  We used Ipomoea bahiensis and its flower visitors as a model system. We evaluated the visitor frequency on the flowers throughout the day, flower opening and closing times, pollen availability and stigma receptivity. We also evaluated the highest fruit production time during the flower longevity was analyzed, and the time of highest pollinator activity, related to climatic factors. Among the floral visitors, bees, especially Melitoma spp., Apis mellifera, and Pseudaugochlora pandora were the most frequent visitors, presenting regular visits synchronized with the flower opening and closing times, which were also regular. This system was influenced mainly by light intensity. Besides, these bees were very active during the times of the highest fruit production.  These data indicate the presence of temporal patterns for both the bees and the visited plants, and synchronization between them, being the light intensity as a modulator of the rhythms of bees and plant, confirming the importance of the temporal adjustments for pollination efficiency.


2002 ◽  
Vol 80 (6) ◽  
pp. 656-663 ◽  
Author(s):  
Herminda Reinoso ◽  
Virginia Luna ◽  
Richard P Pharis ◽  
Rubén Bottini

Anatomical changes in the peach (Prunus persica (L.) Batsch.) flower buds were defined and then assessed and correlated with the phenological stage from early dormancy through to flower opening. The peach flower bud, unlike the vegetative bud, shows a continuous anatomical development during the late autumn and winter dormancy period, even though there are no obvious macroscopic changes. Sterile whorls differentiate rapidly in late summer through early autumn. In contrast, fertile whorls develop very slowly during winter; their rapid development begins in late winter and continues through early spring. The androecium develops throughout the winter, while the gynoecium develops in late winter. By late winter, the anthers begin to undergo microsporogenesis and microgametogenesis and the ovaries have formed ovules. Vascular connections between flower primordia and branch wood are complete by late winter, when rapid phenological changes begin. At this point in time, the peach floral bud enters a "rapid maturation phase" that ends in flower opening. Thus, for the peach flower bud at least, the concept of dormancy as "a temporary suspension of visible growth of any plant structure containing a meristem" that was proposed by earlier researchers appears inappropriate. Rather, cell division, enlargement, and differentiation, which lead to organogenesis, take place throughout the entire "dormancy" period.Key words: dormancy, floral bud anatomy, floral bud phenology, peach, Prunus persica.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1167a-1167
Author(s):  
Stephen M. Southwick ◽  
James T. Yeager

Heavy fruit set of apricot (Prunus armeniaca) cultivars grown in California often require hand thinning to insure that adequate fruit size is obtained. Alternatives to costly hand thinning would be welcome. GA treatments made during flower bud initiation/differentiation have been previously shown to inhibit the development of floral and vegetative buds in a number of different tree fruit species. The effects of post-harvest limb and whole tree aqueous gibberellic acid (GA) sprays on flower and fruit production were investigated over a 3 year period in `Patterson' apricot. Limb treatments indicated the potential for utilizing postharvest GA sprays to reduce the number of flowers produced in the following season. Harvest fruit size (June 1989) was increased by a 100 mg·liter-1 GA whole tree spray applied 7 July 1988 when compared to non-thinned and hand thinned trees. Yield per tree was reduced by that GA spray, but not enough to show statistical differences. No abnormal tree growth responses have been observed in GA-sprayed trees to date. These results and those from the 1989 and 1990 growing seasons will be presented in effort to identify a role for whole tree postharvest GA sprays in a chemical thinning program suitable for commercial apricots.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 561E-561
Author(s):  
Duane W. Greene

Pome fruit display a biennial bearing tendency that is characterized by heavy flowering and fruit set one year followed by a year with reduced bloom and fruit set. This tendancy results in a year with heavy cropping with small fruit, and a subsequent year with large fruit and a small crop. Both situations are undesirable. Chemical thinners in the “on” year are frequently used to modify this cropping behavior. Alternative methods to control cropping by flower bud inhibitions will be discussed. Gibberellin application in the “off” year at or soon after bloom will inhibit flower bud formation and encourage moderate flowering. This method of crop regulation has been used infrequently. Gibberellins differ in their ability to inhibit flowering. Therefore, selection of a specific gibberellin and an effective concentration range may provide greater flexibility in controlling flowering. The cytokinins CPPU and thidiazuron inhibit flower bud formation, increase fruit size, and also thin fruit. Appropriate application of these cytokinins will be discussed where beneficial effects on fruit size may be achieved while maintaining a moderate level of flower bud formation.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 600c-600
Author(s):  
Gregory L. Reighard ◽  
David R. Ouellette

Survival of peach flowers during spring or winter freezes and large fruit size at harvest are critical for profitable peach production in the Southeast. Delaying both bud swell in late winter and flower phenology in spring reduces the risk of flower bud death from cold temperatures. Preliminary research in Tennessee using soybean oil (SO) as a dormant oil spray in place of Superior oil showed SO delayed peach bloom, thinned flower buds, and increased fruit size. In 1997, a `Harvester' peach orchard in Monetta, S.C., and a `Redhaven' orchard near Clemson, S.C., were sprayed in early February with 0%, 6%, 8%, 10%, and 12% SO mixed with 1% (by volume) Latron B-1956. Number of dead flower buds and the flower bud stages for each SO treatment were recorded during the first pink to full bloom flowering period. Excess fruit were hand-thinned in late April. Fruit set, maturity date, weight, and yield/tree were taken. Bud death increased from 14% (control) to 17% to 20% at the 8%, 10%, and 12% SO rates for `Redhaven' and from 13% (control) to 21% at the 10% and 12% rates for `Harvester'. Phenology was delayed 3-4 days for `Redhaven' at 8%, 10%, and 12% SO, but no differences were noted in the `Harvester' trees. No differences in fruit maturity occurred. Fruit weight and yield/tree was higher for all `Harvester' SO treatments and the `Redhaven' 10% and 12% SO treatments. No shoot phytotoxicity was observed.


HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1480-1485 ◽  
Author(s):  
Daniel Rowley ◽  
Brent L. Black ◽  
Dan Drost ◽  
Dillon Feuz

Small-scale fruit and vegetable growers increasingly use high tunnels to expand production windows and exploit demand for local produce. Day-neutral cultivars, high tunnels, low tunnels, and targeted heating were investigated in North Logan, UT (lat. 41.766° N, 1405 m elevation, 119 freeze-free days) to extend the availability of local strawberries. Day-neutral cultivars Albion, Evie 2, Seascape, and Tribute were spring-planted in an annual hill system both inside and outside of high tunnels. Within the high tunnels, low tunnels and targeted root zone heating were tested in replicated plots. During the summer months, plastic was removed from the high tunnels and replaced with shadecloth. Treatments were evaluated for yields, fruit size, and production season. Fruit production in the tunnels began in late May and continued sporadically until December. Combinations of high and low tunnels provided more hours of optimal growing conditions than high tunnels alone, but managing the combination to maintain optimum temperatures proved difficult with temperatures often exceeding the optimum for strawberry. Targeted root zone heating efficiently increased root and canopy temperatures, preventing flower bud damage during extreme cold events, but did not significantly improve total season yields. Of the cultivars tested, ‘Evie 2’ and ‘Seascape’ had the most consistent yields and acceptable fruit size. Economic analysis indicated that growing spring-planted day-neutral strawberries in high tunnels was marginally profitable, whereas field production at this location would be a money-losing enterprise.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553b-553
Author(s):  
Esmaeil Fallahi

Early thinning of apples is important because of its impact on fruit size and next season's flower bud initiation. In the past, apple cultivars were often sprayed with the blossom thinner sodium dinitro-ortho-cresol(Elgetol) during full bloom, followed by a post-bloom application of a fruit thinner such as carbaryl with or without naphthalene acetic acid (NAA). Elgetol was removed from the market in 1989 because of the high cost of re-registration. Full-bloom sprays of sulfcarbamide (Wilthin), pelargonic acid (Thinex), and endothalic acid (Endothal), ammonium thiosulfate (ATS) or petal fall spray of carbaryl (Sevin XLR Plus) were developed as replacements for Elgetol. Hydrogen cyanamide (HC) and other chemicals have been used to eliminate or to reduce chilling requirements of peaches grown under the warm desert conditions. HC applied at “pink bloom” stage was observed to reduce the number of open blooms in `Florda Prince' peach; therefore, it was first used for blossom thinning in this cultivar in Arizona. Later, HC was also found to be an effective blossom thinner for plums in Idaho. HC has recently been found to effectively thin apple and peach blossoms. Armothin has also been an effective blossom thinner for peach in California.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 548a-548 ◽  
Author(s):  
D.M. Glenn ◽  
G. Puterka ◽  
T. Baugher ◽  
T. Unruh ◽  
S. Drake

Hydrophobic particle film technology (HPF) is a developing pest control system for tree fruit production systems. Studies were established in Chile, and Washington, Pennsylvania, and West Virginia in the United States, to evaluate the effect of HPF technology on tree fruit yield and quality. Studies in Chile, Washington, and West Virginia demonstrated increased photosynthetic rate at the leaf level. Yield was increased in peaches (Chile) and apples (West Virginia), and fruit size was increased in apples (Washington and Pennsylvania). Increased red color in apple was demonstrated at all sites with reduced russetting and `Stayman' cracking in Pennsylvania. HPF technology appears to be an effective tool in reducing water and heat stress in tree fruit resulting in increased fruit quality.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 459d-459
Author(s):  
Fumiomi Takeda ◽  
Paul R. Adler ◽  
D. Michael Glenn

Strawberry plants (cvs. Camarosa, Chandler, Sweet Charlie, Primetime, Jewel, and Tribute) were grown in soilless culture systems in a greenhouse from October to May. Fresh-dug and runner-tip Aplug® plants were transplanted into two systems: vertically stacked pots (24 plants/m2) containing perlite and horizontal nutrient film technique troughs (13 plants/m2). Plants were fertigated continuously with recirculating nutrient solution. In a 7-month production cycle, the plug plants bloomed earlier and produced more fruit during the first month of harvest (December) than the fresh-dug plants. Higher yields from plug plants were a result of more fruit numbers and not larger fruit size. Fruit production averaged 6.0 and 3.5 kg/m2 in the trough and pot systems, respectively. The vertical growing system allows greater plant densities, but light intensity reaching the plants in the lower sections of the tower can be less than 20% of levels measured at the top. Establishment costs of protected culture systems are higher, but production is earlier and labor costs are typically reduced. Greenhouse hydroponic culture systems could extend the winter strawberry production to more northern locations.


Sign in / Sign up

Export Citation Format

Share Document