scholarly journals Patterns of Saskatoon (Amelanchier alnifolia Nutt.) Fruit and Seed Growth

1998 ◽  
Vol 123 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Roisin McGarry ◽  
Jocelyn A. Ozga ◽  
Dennis M. Reinecke

Saskatoon fruit are an emerging horticultural crop across the Canadian prairies. As fruit size varies greatly among cultivars, knowledge of fruit growth patterns and factors that affect fruit size can be used to establish breeding trials and develop orchard management strategies that could enhance the production of this crop. In this study, we 1) determined fruit and seed growth patterns among large-, medium-, and small-fruited cultivars of saskatoon using growing degree days to standardize time to crop development and 2) assessed the role of seed number on fruit size. Fruit growth patterns of four cultivars (Thiessen, Northline, Regent, and Smoky) were determined from weekly measurements of fresh and dry fruit mass during two consecutive seasons. These growth patterns exhibited three phases. The largest fruit at maturity were from `Thiessen', followed by `Northline', `Smoky', and `Regent', in descending order. Pedicel cross-sectional areas 1 week before maturity correlated linearly with increasing fresh and dry fruit mass and seed number per fruit. At maturity, seed number per fruit correlated linearly with fresh and dry fruit mass. `Thiessen' contained significantly more seeds per fruit (4.6) than `Northline' (3.7), `Smoky' (3.2), and `Regent' (3.2). The results of this research suggest potential areas for orchard management improvement and future research directions for saskatoon crop improvement.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 682f-682
Author(s):  
Roisin McGarry ◽  
Jocelyn A. Ozga ◽  
Dennis M. Reinecke

Saskatoon fruits, an emerging horticultural crop across the Canadian prairies, vary greatly in size among cultivars. In this study, we compare fruit development patterns among large, medium, and small fruited cultivars of saskatoon, and assess the role of seed number and pedicel diameter on fruit size. Fruit growth patterns of four cultivars (Thiessen, Northline, Regent, and Smoky) were determined from weekly measurements of fruit diameters and fresh and dry flower/fruit weights during two consecutive growing seasons. The developmental patterns of fruit growth determined using the above criteria were similar among cultivars and between years. At maturity, the largest fruits (fresh weight) obtained were from cv. Thiessen, followed by `Northline', `Smoky', and `Regent', in descending order. Pedicel diameters (one week prior to maturity) correlated linearly with increasing fruit diameter and fresh weight. At maturity, seed number per fruit correlated linearly with increasing fruit weight. Thiessen contained significantly more seeds per fruit (4.6) than `Northline' (3.7), `Smoky' (3.2), and `Regent' (3.2).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 513c-513 ◽  
Author(s):  
Martin J. Bukovac ◽  
Jerome Hull ◽  
John C. Neilsen ◽  
Michael Schroeder ◽  
Georg Noga

NAA is used extensively for fruit thinning of apples to increase fruit size and to promote return bloom. In some cultivars, even if thinning is achieved, fruit size at harvest may be less than expected based on crop load. CPPU, N-(2-chloro-4-pyridinyl)-N.-phenylurea, has been shown to increase fruit growth in apples, grapes, and kiwi. We evaluated combinations of NAA and CPPU on thinning, fruit growth and return bloom in Redchief `Delicious', `Elstar', and `Gloster'. CPPU was applied at 5 mgμL–1 (based on 0 to 10 mgμL–1 response curve) in combination with 15 mgμL–1 NAA as high-volume sprays at 7 to 10 mm KFD. Yield and fruit size distribution (on total yield) were used as index of response. In `Delicious', CPPU (3-year study) increased % large (70 mm+) fruit, but in the presence of NAA % large fruit was reduced 2 of the 3 years. CPPU did not induce significant thinning. There were no significant effects on color or soluble solids; firmness was increased slightly and seed number reduced. The L/D ratio was increased and uneven lobe and carpel development was common. CPPU had no significant effect on return bloom in presence or absence of NAA, but NAA increased bloom in both the presence and absence of CPPU. With `Elstar' (2-year study) there was no significant thinning with either chemical, but CPPU increased mean fruit size and % large (70–80 mm) fruit over nonthinned, but not significantly greater than NAA alone. There were no significant differences in firmness, color, soluble solids or seed number. NAA + CPPU did not inhibit fruit growth or cause excessive uneven carpel development. Frost damage reduced crop load in `Gloster' where results were similar to `Elstar' except seed number was reduced by the NAA + CPPU combination.


2020 ◽  
Vol 18 (5) ◽  
pp. 1124-1140
Author(s):  
Quaid Hussain ◽  
Jiaqin Shi ◽  
Armin Scheben ◽  
Jiepeng Zhan ◽  
Xinfa Wang ◽  
...  

2019 ◽  
Author(s):  
Nozomi Kawamoto ◽  
Dunia Pino Del Carpio ◽  
Alexander Hofmann ◽  
Yoko Mizuta ◽  
Daisuke Kurihara ◽  
...  

AbstractOvule development in Arabidopsis thaliana involves pattern formation which ensures that ovules are regularly arranged in the pistils to reduce competition for nutrients and space. Mechanisms underlying pattern formation in plants, such as phyllotaxis, flower morphogenesis or lateral root initiation, have been extensively studied, and genes controlling the initiation of ovules have been identified. However, how a regular spacing of ovules is achieved is not known. Using natural variation analysis combined with quantitative trait locus analysis, we found that the spacing of ovules in the developing fruits is controlled by two secreted peptides, EPFL2 and EPFL9 (also known as Stomagen), and their receptors from the ERECTA (ER) family that act from the carpel wall and the placental tissue. We found that a signalling pathway controlled by EPFL9 acting from the carpel wall through the LRR-receptor kinases ER, ERL1 and ERL2 promotes fruit growth. Regular spacing of ovules depends on EPFL2 expression in the carpel wall and in the inter-ovule spaces, where it acts through ERL1 and ERL2. Loss of EPFL2 signalling results in shorter fruits and irregular spacing of ovules or even ovule twinning. The EPFL2 expression pattern between ovules is under negative-feedback regulation by auxin, which accumulates in the arising ovule primordia. We propose that the auxin-EPFL2 signalling module evolved to control the initiation and regular, equidistant spacing of ovule primordia, which serves to minimise competition between developing seeds. Together, EPFL2 and EPFL9 coordinate ovule patterning and thereby seed number with fruit growth through a set of shared receptors.


1996 ◽  
Vol 121 (5) ◽  
pp. 954-958 ◽  
Author(s):  
A.N. Lakso ◽  
G.B. Mattii ◽  
J.P. Nyrop ◽  
S.S. Denning

The hypothesis was tested that effects of late-season European Red Mite (ERM) [Panonychus ulmi (Koch)] injury on apple (Malus domestica Borkh.) fruit development are better explained by carbon physiology than by pest densities. Midseason ERM populations were allowed to develop in mature semi-dwarf `Starkrimson Delicious'/M26 trees with moderately heavy crops, then were controlled with miticides at different mite-day (activity of one mite per leaf for 1 day) levels as estimated by weekly leaf sampling. The range of final mite-days was from 250 to 2100 on individual trees. Seasonal fruit growth patterns were monitored. Diurnal whole-canopy net CO2 exchange rate (NCER) was measured in eight clear flexible balloon whole-canopy chambers on several dates before and after mite infestations. Mite injury reduced fruit growth rates. Leaf and whole-canopy NCER were reduced similarly. Late season fruit growth and final fruit size were correlated with accumulated mite-days, but were better correlated to whole-canopy NCER per fruit. Fruit firmness, color, soluble solids and starch ratings showed no correlation to mite-days. Number of flower clusters per tree and final fruit per tree the following year were not related to accumulated mite-days, but final fruit per tree the following year were better correlated to whole-canopy NCER per fruit. These results generally supported the hypothesis.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 84-86 ◽  
Author(s):  
H.M. Wallace ◽  
B.J. King ◽  
L.S. Lee

Pollen source is known to affect the fruit size and quality of 'Imperial' mandarin, but no study has determined the appropriate orchard design to maximize the beneficial effects of pollen source. We determined the parentage of seeds of 'Imperial' mandarin using the isozyme shikimate dehydrogenase to characterize pollen flow and the effect on fruit size in an orchard setting. Two blocks were examined: 1) a block near an 'Ellendale' pollinizer block; and 2) an isolated pure block planting. Fruit size and seed number were maximum at one and three rows from the pollinizer (P ≤ 0.05). Isozyme results were consistent with all seeds being the result of fertilization by the 'Ellendale' pollinizer. In the pure block planting, fruits in rows 5-11 inside the block were very small with no seeds. This indicates poor pollen flow resulting in a reduction in fruit quality for the pure block. These results emphasize the importance of pollinizers in orchard design, and bees in orchard management. They suggest that each row should be planted no more than three rows from the pollinizer to maximize the benefits of the pollen parent in self-incompatible cultivars such as 'Imperial'.


2021 ◽  
Vol 22 (23) ◽  
pp. 12965
Author(s):  
Muslim Qadir ◽  
Xinfa Wang ◽  
Syed Rehmat Ullah Shah ◽  
Xue-Rong Zhou ◽  
Jiaqin Shi ◽  
...  

In seed-bearing plants, the ovule (“small egg”) is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristics for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, we construct the first integrated molecular network for ovule number regulation, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and further cognition on it.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 632-635 ◽  
Author(s):  
Raquel Cano-Medrano ◽  
Rebecca L. Darnell

To determine if multiple applications of GA3 would increase size of parthenocarpic fruit, and to assess the interaction between GA3 applications and pollination, `Beckyblue' rabbiteye blueberry (Vaccinium ashei Reade) flowers were treated with single or multiple applications of GA3 alone or in combination with full or partial pollination. Single or multiple applications of GA3 resulted in similar or increased fruit set compared with pollination, and increased fruit set compared with no pollination. GA3 applications decreased fruit mass and increased the fruit development period in comparison with pollination alone. Multiple, late applications of GA3 were ineffective in overcoming these effects. Partial (nonsaturating) pollination resulted in an average fruit set of 60%, while set following GA3 treatment in combination with full or partial pollination averaged 85%. Fruit mass was greater in the full pollination ±GA3 treatments than in all other treatments. The number of large seeds and seed mass per fruit were greatest in the full pollination treatment, and were significantly decreased by all treatments in which GA3 and/or partial pollination were used; however, there were no concomitant effects of GA3 in delaying the fruit development period. Our results indicate that under optimal pollination conditions, no detrimental effects of GA3 applications on fruit set, fruit size, or fruit development period in blueberry are to be expected, even though GA3 reduces seed number and seed mass. Furthermore, GA3 applications appear to be beneficial in increasing fruit set under suboptimal pollination conditions, although smaller fruit are to be expected under such conditions. Chemical name used: gibberellic acid (GA3).


2021 ◽  
pp. 105381512199557
Author(s):  
Jay Buzhardt ◽  
Anna Wallisch ◽  
Dwight Irvin ◽  
Brian Boyd ◽  
Brenda Salley ◽  
...  

One of the earliest indicators of autism spectrum disorder (ASD) is delay in language and social communication. Despite consensus on the benefits of earlier diagnosis and intervention, our understanding of the language growth of children with ASD during the first years of life remains limited. Therefore, this study compared communication growth patterns of infants and toddlers with ASD to growth benchmarks of a standardized language assessment. We conducted a retrospective analysis of growth on the Early Communication Indicator (ECI) of 23 infants and toddlers who received an ASD diagnosis in the future. At 42 months of age, children with ASD had significantly lower rates of gestures, single words, and multiple words, but significantly higher rates of nonword vocalizations. Children with ASD had significantly slower growth of single and multiple words, but their rate of vocalization growth was significantly greater than benchmark. Although more research is needed with larger samples, because the ECI was designed for practitioners to monitor children’s response to intervention over time, these findings show promise for the ECI’s use as a progress monitoring measure for young children with ASD. Limitations and the need for future research are discussed.


Author(s):  
Dien Thi Kieu Pham ◽  
Kiet Thuong Do ◽  
Sanh Du Nguyen

The cherry tomato fruit size depends on the growth of the pericarp which is parenchymal cells. The blue light stimulates the expansion of cotyledon cells, hypocotyl cells and leaf cells. In this study, the cherry tomato fruit was used as a material to investigate the effects of the blue light on the pericarp cells growth in fruit growth stage and lycopene accumulation in fruit growth and ripening stage. After 7 days of the blue light (440, 450 or 460 nm) treatment, pericarp cells growth and physiological, biochemical changes of the pericarp cells of 7-day-old fruit pericarp piece in vitro were analyzed. The lycopene content and some organic compound contents of 42-day-old postharvest fruits treated by the blue light similarly in 7 days and 7, 21-day-old fruit wrapped with blue filter (440-510 nm filtered) in 7 days were measured. The results showed that the 450 nm wavelength blue light the increased pericarp thickness of 7-day-old fruits through the increasement of the pericarp cell diameter. The 460 nm wavelength blue light the increased lycopene content of 42-day-old postharvest fruits. The blue filter treatment increased the sugar total content of 7- day-old fruits and increased the lycopene content of 21-day-old fruits.


Sign in / Sign up

Export Citation Format

Share Document