scholarly journals Floral Meristem Development in Cranberry Apical Buds during Winter Rest and Its Implication on Yield Prediction

2019 ◽  
Vol 144 (5) ◽  
pp. 314-320
Author(s):  
Jenny L. Bolivar-Medina ◽  
Camilo Villouta ◽  
Beth Ann Workmaster ◽  
Amaya Atucha

The formation and development of floral meristems is key to fruit production. However, limited information regarding the development of floral buds during the dormant period of cranberry (Vaccinium macrocarpon) constrains the ability to forecast yield early and accurately. The objectives of this study were to characterize the development of floral meristems from fall to spring and to evaluate the number of floral meristems formed across different bud sizes and upright types, as well as their contribution to the fruit production of the next year. Apical buds of different sizes on vegetative and fruiting uprights were tagged and collected periodically from fall to spring for histological study. An extra set of tagged buds was left in the field to evaluate their flower and fruit production. Five stages of floral development were identified based on the concentric differentiation of organ primordia. Large buds from vegetative uprights developed earlier, had a higher number of floral meristems, and became fruiting uprights; they had the highest number of flowers and fruit. Buds from fruiting uprights had the lowest number of floral meristems and delayed development; subsequently, they had the lowest number of fruit per upright. Our results provide evidence of active floral meristem differentiation during fall and winter, as well as differences in the timing and development stage according to bud size. In addition, our study shows that upright types and bud sizes influence the fruit production of the following year; therefore, they should be considered in cranberry crop forecasting models.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
S.E. Clark ◽  
S.E. Jacobsen ◽  
J.Z. Levin ◽  
E.M. Meyerowitz

The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems.


2021 ◽  
Author(s):  
Ya Min ◽  
Stephanie J. Conway ◽  
Elena M. Kramer

ABSTRACTIn-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FM) produce floral organs, after which they undergo floral meristem termination (FMT), and precise control of organ initiation and FMT is crucial to reproductive success of any flowering plant. Using a live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results have uncovered distinct patterns of primordium initiation between stamens and staminodes compared to carpels, and provided insight into the process of FMT, which is discernable based on cell division dynamics preceding carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both an evolutionary and developmental context.


Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 2057-2067 ◽  
Author(s):  
S. E. Clark ◽  
M. P. Running ◽  
E. M. Meyerowitz

We have previously described the phenotype of Arabidopsis thaliana plants with mutations at the CLAVATA1 (CLV1) locus (Clark, S. E., Running, M. P. and Meyerowitz, E. M. (1993) Development 119, 397–418). Our investigations demonstrated that clv1 plants develop enlarged vegetative and inflorescence apical meristems, and enlarged and indeterminate floral meristems. Here, we present an analysis of mutations at a separate locus, CLAVATA3 (CLV3), that disrupt meristem development in a manner similar to clv1 mutations. clv3 plants develop enlarged apical meristems as early as the mature embryo stage. clv3 floral meristems are also enlarged compared with wild type, and maintain a proliferating meristem throughout flower development. clv3 root meristems are unaffected, indicating that CLV3 is a specific regulator of shoot and floral meristem development. We demonstrate that the strong clv3-2 mutant is largely epistatic to clv1 mutants, and that the semi- dominance of clv1 alleles is enhanced by double heterozygosity with clv3 alleles, suggesting that these genes work in the same pathway to control meristem development. We propose that CLV1 and CLV3 are required to promote the differentiation of cells at the shoot and floral meristem.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 543c-543
Author(s):  
Ami N. Erickson ◽  
Albert H. Markhart

Fruit yield reduction due to high temperatures has been widely observed in Solanaceous crops. Our past experiments have demonstrated that Capsicum annuum cultivars Ace and Bell Boy completely fail to produce fruit when grown at constant 33 °C. However, flowers are produced, continually. To determine which stages of flower development are sensitive to high temperatures, pepper buds, ranging in size from 1 mm to anthesis, were exposed to high temperatures for 6 hr, 48 hr, 5 days, or for the duration of the experiment. Fruit set for each bud size was determined. Exposure to high temperatures at anthesis and at the 2-mm size stage for 2 or more days significantly reduced fruit production. To determine whether inhibition of pollination, inhibition of fertilization, and/or injury to the female or male structures prevents fruit production at high temperatures, flowers from pepper cultivars Ace and Bell Boy were grown until flowers on the 8th or 9th node were 11 mm in length. Plants were divided between 25 °C and 33 °C constant growth chambers for 2 to 4 days until anthesis. At anthesis, flowers from both treatments were cross-pollinated in all combination, and crosses were equally divided between 33 or 25 °C growth chambers until fruit set or flowers abscised. All flower crosses resulted in 80% to 100% fruit set when post-pollination temperatures were 25 °C. However, post-pollination temperatures of 33 °C significantly reduced fruit production. Reduced fruit set by flowers exposed to high temperatures during anthesis and pollination is not a result of inviable pollen or ovule, but an inhibition of fertilization or initial fruit development.


Author(s):  
Gordon J. Gallivan ◽  
Andrea Spickett ◽  
Heloise Heyne ◽  
Arthur M. Spickett ◽  
Ivan G. Horak

Despite many studies regarding tick ecology, limited information on long-term changes in tick populations exist. This study assessed the long-term population dynamics of the less frequently collected questing ixodid ticks in the Kruger National Park (KNP). From 1988 to 2002, monthly dragging of the vegetation was performed in three habitats (grassland, woodland and gully) at two sites in the KNP (Nhlowa Road, Landscape Zone 17, and Skukuza, Landscape Zone 4). Amblyomma marmoreum and Rhipicephalus evertsi evertsi were collected as larvae most commonly. Most A. marmoreum larvae were collected at Skukuza and numbers peaked from March to July. More R. evertsi evertsi larvae were collected at Nhlowa Road and numbers peaked in summer and in winter, while at Skukuza there was a single peak in spring. Haemaphysalis elliptica, Rhipicephalus simus and Rhipicephalus turanicus were collected as adults most commonly. More Ha. elliptica and R. turanicus were collected at Nhlowa Road than at Skukuza, while R. simus numbers from the two sites were approximately equal. Ha. elliptica were collected most often between February and June, and R. simus and R. turanicus during February and March. All three species were collected more frequently in gullies than in grassland or woodland. Their numbers increased in 1994/1995 following an eruption of rodents, the preferred hosts of the immature stages. The different host-seeking strategies of ticks largely determine the development stage at which they are likely to be collected during vegetation dragging and reflect a complex interaction between ticks, their hosts and the environment.


2020 ◽  
Author(s):  
Liling Yang ◽  
Shilian Qi ◽  
Arfa touqeer ◽  
Haiyang Li ◽  
Xiaolan Zhang ◽  
...  

Abstract Background: Flower development directly affects fruit production in tomato. Despite the framework mediated by ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has not been well examined.Results: Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation to the gene Solanum lycopersicum GT11 (SlGT11) that encodes a transcription factor belonging to Trihelix gene family. SlGT11 is expressed in the early stages of the flower and the expression becomes more specific to the primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi silencing of SlGT11 verifies the defective phenotypes of the slf mutant. The carpelloid stamen in slf mutant indicates that SlGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the occurrence of floral reversion in slf indicate that part of the C-function requires SlGT11 activity in the fourth whorl. Furthermore, we find that at higher temperature, the defects of slf mutant are substantially enhanced, with petals transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth whorl increased, indicating that SlGT11 functions in the development of the three inner floral whorls. Consistent with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated in slf mutants.Conclusions: Together with the spatiotemporal expression pattern, we suggest that SlGT11 functions in floral organ patterning and maintenance of floral determinacy in tomato.


2020 ◽  
Author(s):  
Yuting Shou ◽  
Yihua Zhu ◽  
Yulong Ding

Abstract Background: The vegetative growth is an important stage for plants when they conduct photosynthesis, accumulate and collect all resources needed and prepare for reproduction stage. Bamboo is one of the fastest growing plant species. The rapid growth of Phyllostachys edulis results from the expansion of intercalary meristem at the basal part of nodes, which are differentiated from the apical meristem of rhizome lateral buds. However, little is known about the major signaling pathways and players involved during this rapid development stage of bamboo. To study this question, we adopted the high-throughput sequencing technology and compared the transcriptomes of Moso bamboo rhizome buds in germination stage and late development stage. Results: We found that the development of Moso bamboo rhizome lateral buds was coordinated by multiple pathways, including meristem development, sugar metabolism and phytohormone signaling. Phytohormones have fundamental impacts on the plant development. We found the evidence of several major hormones participating in the development of Moso bamboo rhizome lateral bud. Furthermore, we showed direct evidence that Gibberellic Acids (GA) signaling participated in the Moso bamboo stem elongation. Conclusion: Significant changes occur in various signaling pathways during the development of rhizome lateral buds. It is crucial to understand how these changes are translated to Phyllostachys edulis fast growth. These results expand our knowledge on the Moso bamboo internodes fast growth and provide research basis for further study.


Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1323-1333 ◽  
Author(s):  
J.C. Fletcher

The regulation of proper shoot and floral meristem size during plant development is mediated by a complex interaction of stem cell promoting and restricting factors. The phenotypic effects of mutations in the ULTRAPETALA gene, which is required to control shoot and floral meristem cell accumulation in Arabidopsis thaliana, are described. ultrapetala flowers contain more floral organs and whorls than wild-type plants, phenotypes that correlate with an increase in floral meristem size preceding organ initiation. ultrapetala plants also produce more floral meristems than wild-type plants, correlating with an increase in inflorescence meristem size without visible fasciation. Expression analysis indicates that ULTRAPETALA controls meristem cell accumulation partly by limiting the domain of CLAVATA1 expression. Genetic studies show that ULTRAPETALA acts independently of ERA1, but has overlapping functions with PERIANTHIA and the CLAVATA signal transduction pathway in controlling shoot and floral meristem size and meristem determinacy. Thus ULTRAPETALA defines a novel locus that restricts meristem cell accumulation in Arabidopsis shoot and floral meristems.


2015 ◽  
Vol 43 (3) ◽  
Author(s):  
K. Lakshmi Jayaraj ◽  
U. Bhavyashree ◽  
T.P. Fayas ◽  
K.K. Sajini ◽  
M.K. Rajesh ◽  
...  

<div><table cellspacing="0" cellpadding="0" align="center"><tbody><tr><td align="left" valign="top"><p>Since coconut is   one of the most recalcitrant species to generate <em>in vitro</em>, it is   necessary to study in detail about the cellular changes that occur during   somatic embryogenesis to enhance our knowledge about this phenomenon. In the   present study, coconut plumular tissues, the shoot meristem including leaf   primordia, were used as explants for <em>in vitro </em>regeneration studies.   Histological studies were carried out in different stages of plumule culture.   No noticeable growth was observed in 15 days old cultures. After 30 days,   meristematic cells could be identified. Abundance of meristematic cells,   foremost to the development of callus structures, was observed after 45 days.   After 75 days, globular friable calli were formed and histological studies   revealed the presence of meristematic centers which eventually formed somatic   embryos. The histological study of matured somatic embryos formed after 120   days of callus initiation showed a clear meristematic zone of parenchyma   cells, surrounded by vascular bundles. Histological studies, carried out for   certain abnormalities like compact calli, abnormal somatic embryoids with   rudimentary shoots and multiplied roots, revealed the presence of intact   cotyledonary leaves which seemed to inhibit the apical meristem development   of somatic embryoids. The presence of vascular bundles in the early stages of   callus formation might lead to the direct formation of meristemoids. These   results could aid future studies leading to enhanced control of the somatic   embryogenic process and greater efficiency of somatic embryo and plantlet   formation in coconut.</p></td></tr></tbody></table></div>


Sign in / Sign up

Export Citation Format

Share Document