scholarly journals A study of the dependence between fuel consumption of a heat gas turbine and variation of heat loading of regional consumers having various climatic conditions taking into account determination of structural characteristics of heat exchanging equipment for grid water heating

2021 ◽  
Vol 25 (4) ◽  
pp. 478-487
Author(s):  
E. L. Stepanova ◽  
P. V. Zharkov

The aim was to optimize the dependence between fuel consumption and heat loading of regional consumers varied due to climatic conditions, taking into account the determination of structural characteristics of heat exchanging equipment for grid water heating in a heat gas turbine. A heat gas turbine comprising two fuel combustion chambers, a waste-heat boiler and a contact heat exchanger to heat makeup grid water was investigated. Scheme and parametric optimization studies were carried out using a mathematic model of a gas turbine created using a software and hardware system developed at the Department of Heat Power Systems of the Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences. Th turbine operating conditions differing in heat loads in four suggested operating regions were studied. It was found that an increase in fuel consumption in the second combustion chamber was 29%– 84% compared to that in the first combustion chamber. This rise was recorded when the turbine heat loading was increasing in the considered regions. Data analysis of the scheme and parametric optimization studies showed that, for operating conditions with a higher heat loading, it seems reasonable to ensure the maximum possible heating of makeup grid water as the loading rises. It is also recommended to slightly increase the heat surface area of the makeup grid water heater whose structural materials are less expensive than in a waste-heat boiler. It was shown that the suggested technical solution slightly increases specific capital investments while fully providing electrical and heat power to consumers. The obtained results can be used to select optimal technical solutions ensuring competitiveness in the operation of a heat gas turbine in regions with various climatic characteristics.

2021 ◽  
Vol 2096 (1) ◽  
pp. 012015
Author(s):  
A M Kler ◽  
E L Stepanova ◽  
P V Zharkov

Abstract Optimization studies of the dependence of fuel consumption on changes in the heat load of consumers in regions with different climatic conditions and taking into account the determination of the design characteristics of the equipment for heating network water of a cogeneration GTU were carried out. The GTU has two fuel combustion chambers, a waste-heat boiler and a contact heat exchanger for heating of feeding network water. Schematic-parametric optimization studies were carried out on the design mathematical model of the GTU. The analysis of the data of the circuit-parametric optimization made it possible to conclude that for the operating modes of the gas turbine plant with a higher thermal load, it is advantageous to slightly increase the heating surface area of the heater of feeding network water, the cost of materials for the manufacture of which is lower than for the waste heat boiler. This technical solution provided a relatively low increase in specific capital investments with full provision of consumers with electric and thermal energy. The data obtained in this work can be used to select the optimal technical solutions that ensure competitiveness in the operation of a cogeneration gas turbine unit in regions with different climatic characteristics.


Author(s):  
C. Boccaletti ◽  
G. Cerri ◽  
B. Seyedan

The objective of the paper is to assess the feasibility of the neural network (NN) approach in power plant process evaluations. A “feedforward” technique with a back propagation algorithm was applied to a gas turbine equipped with waste heat boiler and water heater. Data from physical or empirical simulators of plant components were used to train such a NN model. Results obtained using a conventional computing technique are compared with those of the direct method based on a NN approach. The NN simulator was able to perform calculations in a really short computing time with a high degree of accuracy, predicting various steady-state operating conditions on the basis of inputs that can be easily obtained with existing plant instrumentation. The optimization of NN parameters like number of hidden neurons, training sample size and learning rate is discussed in the paper.


2001 ◽  
Vol 123 (2) ◽  
pp. 371-376 ◽  
Author(s):  
C. Boccaletti ◽  
G. Cerri ◽  
B. Seyedan

The objective of the paper is to assess the feasibility of the neural network (NN) approach in power plant process evaluations. A “feed-forward” technique with a back propagation algorithm was applied to a gas turbine equipped with waste heat boiler and water heater. Data from physical or empirical simulators of plant components were used to train such a NN model. Results obtained using a conventional computing technique are compared with those of the direct method based on a NN approach. The NN simulator was able to perform calculations in a really short computing time with a high degree of accuracy, predicting various steady-state operating conditions on the basis of inputs that can be easily obtained with existing plant instrumentation. The optimization of NN parameters like number of hidden neurons, training sample size, and learning rate is discussed in the paper.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Actuators ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 54 ◽  
Author(s):  
Suzana Lampreia ◽  
Valter Vairinhos ◽  
Victor Lobo ◽  
José Requeijo

This paper describes the analysis, from a statistical point of view, of a maritime gas turbine, under various operating conditions, so as to determine its state. The data used concerns several functioning parameters of the turbines, such as temperatures and vibrations, environmental data, such as surrounding temperature, and past failures or quasi-failures of the equipment. The determination of the Mean Time Between Failures (MTBF) gives a rough estimate of the state of the turbine, but in this paper we show that it can be greatly improved with graphical and statistical analysis of data measured during operation. We apply the Laplace Test and calculate the gas turbine reliability using that data, to define the gas turbine failure tendency. Using these techniques, we can have a better estimate of the turbine’s state, and design a preventive observation, inspection and intervention plan.


Aerospace ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 55 ◽  
Author(s):  
James Large ◽  
Apostolos Pesyridis

In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro turbojet engines into turbofans with the use of a continuously variable gearbox, thus maintaining a single spool configuration and relative design simplicity. This is an effort to reduce the initial engine development cost, whilst improving the propulsive performance. The BMT 120 KS micro turbojet engine is selected for the performance evaluation of the conversion process using the gas turbine performance software GasTurb13. The preliminary design of a matched low-pressure compressor (LPC) for the proposed engine is then performed using meanline calculation methods. According to the analysis that is carried out, an improvement in the converted micro gas turbine engine performance, in terms of thrust and specific fuel consumption is achieved. Furthermore, with the introduction of a CVT gearbox, the fan speed operation may be adjusted independently of the core, allowing an increased thrust generation or better fuel consumption. This therefore enables a wider gamut of operating conditions and enhances the performance and scope of the tactical UAV.


Author(s):  
Andrew Banta

California State University, Sacramento, has constructed and put into service a stand alone cogeneration laboratory. The major components are a 75 kW gas turbine and generator, a waste heat boiler, and a 10 ton absorption chiller. Initial testing has been completed with efforts concentrating on the gas turbine engine and the absorption chiller. A two part thermodynamic performance analysis procedure has been developed to analyze the cogeneration plant. A first law energy balance around the gas turbine determines the heat into the engine. A Brayton cycle analysis of the gas turbine engine is then compared with the measured performance. While this engine is quite small, this method of analysis gives very consistent results and can be applied to engines of all sizes. Careful attention to details is required to obtain agreement between the calculated and measured outputs; typically they are within 10 to 15 percent. In the second part of the performance analysis experimental operation of the absorption chiller has been compared to that specified by the manufacturer and a theoretical cycle analysis. While the operation is within a few percent of that specified by the manufacturer, there are some interesting differences when it is compared to a theoretical analysis.


Author(s):  
K. S. Varma ◽  
Asgharali I. Khandwawala ◽  
S. A. Asif

In the present study a stationary open cycle gas turbine plant, including a thermal regenerator has been theoretically analyzed to assess the impact of steam addition in combustion air, on its performance. the effect of varying steam upto 15% air at different pressure ratios and turbine inlet temperatures have been reported. Mixing of steam in air results in higher values of cycle efficiency and increased specific work output, feasibility to generate steam needed for the purpose in a waste heat boiler have also been studied.


2002 ◽  
Vol 124 (2) ◽  
pp. 256-262 ◽  
Author(s):  
K. Mathioudakis ◽  
A. Stamatis ◽  
E. Bonataki

A method for defining which parts of a combined cycle gas turbine (CCGT) power plant are responsible for performance deviations is presented. When the overall performances deviate from their baseline values, application of the method allows the determination of the component(s) of the plant, responsible for this deviation. It is shown that simple differentiation approaches may lead to erroneous conclusions, because they do not reveal the nature of deviations for individual components. Contributions of individual components are then assessed by separating deviations due to permanent changes and deviations due to change of operating conditions. A generalized formulation is presented together with the way of implementing it. Test cases are given, to make clearer the ideas put forward in the proposed method.


Sign in / Sign up

Export Citation Format

Share Document