scholarly journals DEVELOPMENT OF PROMISING SYNTHESIS - TECHNOLOGY AVENIR GAZ CONVERTING DIESELS TO GAS ENGINES WITH SPECIAL IGNITION

ScienceRise ◽  
2020 ◽  
pp. 3-9
Author(s):  
Serhii Kovalov

The object of research is the multifunctional synthesis technology Avenir Gaz (of various levels of complexity), intended for converting transport diesel engines into spark-ignited gas internal combustion engines (ICE) for operation on liquefied petroleum gas (LPG). Investigated problem: the creation of an affordable synthesis technology in terms of complexity and price, which allows converting operating diesel engines into gas internal combustion engines operating on cheaper and environmentally friendly gas fuel - LPG. Main scientific results: Avenir Gaz synthesis technology (two levels of complexity, qualified as levels "A" and "B") for converting diesel engines into gas internal combustion engines is developed and created. It is shown that the conversion of diesel engines according to the Avenir Gaz synthesis technology is carried out on the basis of the developed electronic microprocessor control systems. And the basis of the control systems is the developed and manufactured two electronic microprocessor control units Avenir Gaz 37 (hereinafter – ECU Avenir Gaz 37). ECUs in accordance with the levels of complexity of synthesis technology are qualified as – ECUs Avenir Gaz 37 "A" and Avenir Gaz 37 "B". It is shown that Avenir Gaz synthesis technology of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the inlet pipeline. At the same time, the Avenir Gaz 37 "A" ECU, using the signal from the Hall sensor of the distributor, limits the maximum speed of the gas engine, thereby ensuring its safe operation. And the synthesis technology Avenir Gaz 37 of level "B" allows converting diesel engines into gas internal combustion engines providing group or sequential injection of LPG by electromagnetic gas nozzles (injection system of the Common Rail type) into the intake manifold in the area close to the intake valve. Area of practical use of the research results: converting diesel vehicles, including agricultural machinery (powerful wheeled and tracked tractors, combines, etc.) into spark-ignited gas combustion engines operating on LPG. An innovative technological product: Avenir Gaz synthesis technology, which allows converting the transport diesel engines in operation into gas internal combustion engines for operation on LPG. Scope of application of the innovative technological product: naturally aspirated and supercharged diesel engines with the number of cylinders from one to six, in-line and V-shaped, with a uniform alternation of working strokes.

InterConf ◽  
2021 ◽  
pp. 327-332
Author(s):  
Serhii Kovalov

The expediency of converting the transport diesel engines in operation into gas internal combustion engines with spark ignition for operation on liquefied petroleum gas has been substantiated. It is shown that the use of liquefied petroleum gas instead of diesel fuel can reduce the operating costs of vehicles. Multifunctional electronic microprocessor control systems based on Avenir Gaz 37 level “A” and Avenir Gaz 37 level “B” electronic control units have been developed. It is shown that an electronic microprocessor control system with an Avenir Gaz 37 electronic control unit of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the intake manifold. The test results showed the high energy and efficient performance of the gas internal combustion engine. The second electronic microprocessor control system with an electronic control unit Avenir Gaz 37 of level "B" allows converting diesel engines into gas internal combustion engines with LPG injection through an accumulative power supply subsystem and multipoint injection of liquefied petroleum gas (Common Rail type) in combination with the use of a contactless electronic subsystem ignition with a movable voltage distributor and a cylinder filling control subsystem with a charge of the working mixture. At the same time, Avenir Gaz 37 "B" ECU with a loaded B1 level software module provides group injection of LPG into the intake manifold and sequential injection with a B2 level software module. The principle of operation of each of the three subsystems, which the D-240-LPG-"B" gas engine is equipped with, is described. The tests carried out on the D-240-LPG-"B" gas engine with the Avenir Gaz 37 "B" control unit confirmed its operability.


InterConf ◽  
2021 ◽  
pp. 258-263
Author(s):  
Serhii Kovalov

The expediency of converting transport diesel engines into gas internal combustion engines with spark ignition has been substantiated. A multifunctional synthesis technology Avenir Gaz has been developed, designed to convert diesel engines of vehicles in operation into spark-ignited gas internal combustion engines operating on a cheaper and environmentally friendly gas fuel - LPG. The synthesis technology is based on three electronic microprocessor control units Avenir Gaz 37 of level "A", Avenir Gaz 37 of level "B" and Avenir Gaz 37 of level "C". It is shown that Avenir Gaz synthesis technology of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the intake pipeline, and level “B” provides group or sequential LPG injection by electromagnetic gas nozzles (common rail injection system ) into the intake manifold. Avenir Gaz synthesis technology of level "C" allows the use of an electronic inductive spark ignition system with an immovable voltage distributor (with two-spark or individual ignition coils).


ScienceRise ◽  
2021 ◽  
pp. 23-29
Author(s):  
Vadym Horeniuk

Object of research: the process of movement of cars with internal combustion engines or the electric drive on a road curve. Investigation problem: assessment of the stability of cars with internal combustion engines or electric drive on a road curve and determination of conditions of its ensuring. The main scientific result. The article evaluated the stability of cars with internal combustion engines or electric drive on a road curve and determines the conditions of its ensuring using an algorithm that combines mathematical models of car movement on a road curve, synthesized based on balance equations of both kinematics and dynamics. The proposed models consider the change in speed of cars while driving on a road curve, and therefore belong to the class of differential equations. The analysis of these models allows calculating changes in time of values of limiting and critical speeds of movement of the car on a road curve. The article identifies the prospects of integration into this set of mathematical models another one, synthesized in the space of linguistic variables that characterize the uncertainty of the road surface and the degree of tire wear on different wheels of the car. The area of practical application of the research results: Automotive enterprises specializing in equipping cars with traffic control systems. Innovative technological product: A method of determining the limiting parameters of movement of the car on road curves, at which the car does not overturn while passing turns, and an algorithm for its implementation, which combines kinematic and dynamic mathematical models of car movement on the road curve. Scope of application of the innovative technological product: Equipping cars with additional control systems that assess the critical values of the traffic parameters on turns to ensure the conditions of non-overturning when the car passes these turns


2019 ◽  
Vol 254 ◽  
pp. 01010 ◽  
Author(s):  
Łukasz Wargula ◽  
Piotr Krawiec ◽  
Konrad Jan Waluś

Exceeding air pollution emission standards in large cities leads to a search of methods of reducing emissions and their neutralization. One of the ways to improve air quality is to increase green infrastructure in urban areas. It leads to an increase in the demand for work machines that process waste from tree care is. Mobile chopping shredders for tree branches are driven by internal combustion engines defined in the standard as drives of non-road mobile machines. In the case of spark-ignition internal combustion engines, these provisions are liberal. This leads to a low level of technical advancement of these drives characterized mainly by the carburettor fuel supply system. The article presents an innovative research method of the fuel injector of the injection unit, enabling mechatronisation of the combustion engine's injection system. The measured values make it possible to evaluate the fuel consumption depending on the developed (patent pending) innovative control systems for the chipper drive. Ultimately, the conducted research will enable the increase of the effectiveness of wood chipping grinding processes and reduction of harmful emissions.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2006 ◽  
Vol 129 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Matthew A. Franchek ◽  
Patrick J. Buehler ◽  
Imad Makki

Presented is the detection, isolation, and estimation of faults that occur in the intake air path of internal combustion engines during steady state operation. The proposed diagnostic approach is based on a static air path model, which is adapted online such that the model output matches the measured output during steady state conditions. The resulting changes in the model coefficients create a vector whose magnitude and direction are used for fault detection and isolation. Fault estimation is realized by analyzing the residual between the actual sensor measurement and the output of the original (i.e., healthy) model. To identify the structure of the steady state air path model a process called system probing is developed. The proposed diagnostics algorithm is experimentally validated on the intake air path of a Ford 4.6L V-8 engine. The specific faults to be identified include two of the most problematic faults that degrade the performance of transient fueling controllers: bias in the mass air flow sensor and a leak in the intake manifold. The selected model inputs include throttle position and engine speed, and the output is the mass air flow sensor measurement.


2020 ◽  
Vol 5 (4(73)) ◽  
pp. 35-41
Author(s):  
A.G. Taranin

The present publication illuminate the tasks as follows: Electronic indicator proper usage at four–stroke internal combustion engines (diesel engines) indication; Indication results & diagram proper transfer to PC; indicator diagram top dead center TDC correction and engine performance data output values such as PMI–mean indicated pressure, PME–mean effective pressure, NIND–indicated power and NEFF–effective power proper calculations for each cylinder and engine total.


Author(s):  
Patrick J. Buehler ◽  
Matthew A. Franchek ◽  
Imad Makki

Presented in this paper is an information synthesis (IS) approach for the mass air flow (MAF) sensor diagnosis on internal combustion engines. An information synthesis solution is attractive for diagnostics since the algorithm automatically calibrates itself, reduces the number of false detections and compresses a large amount of engine health information into the model coefficients. There are three primary parts to information synthesis diagnostics. First, an IS model is used to predict the MAF sensor output based on the engine operating condition. The inputs to this IS model include the throttle position sensor (TPS) and the engine speed sensor information. The second part concerns an online adaptation process that is used to reduce the errors between the IS model output and the actual MAF sensor output. Finally the adapted model coefficients are used to diagnose the sensor as well as identify the source for changes in the sensor characteristics. This proposed solution is experimentally tested and validated on a Ford 4.6 L V-8 fuel injected engine. The specific MAF sensor faults to be identified include sensor bias and a leak in the intake manifold.


Sign in / Sign up

Export Citation Format

Share Document