scholarly journals Studies of the content of optical isomers of amino acids in food

Food systems ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 190-196
Author(s):  
A. S. Knyazeva ◽  
D. A. Utyanov ◽  
A. V. Kulikovskii ◽  
A. A. Kurzova

Food products undergo a wide range of chemical changes during their processing and storage. As a result of such reactions, both new chemical compounds and optical isomerization of compounds already present in the composition can be formed. The second case concerns the formation of D-enantiomers of amino acids from their L-forms. D-forms of amino acids not only have no biological value for the body, but also often have a negative effect on the human body due to the impossibility of metabolizing them and, as a consequence, their accumulation in the body. The aim of the work was to study the quantitative content of D-isomers of amino acids in milk that passed the ultra-pasteurization process and dairy products based on bacterial starter culture. The research results showed that in both cases of the considered technological methods, amino acid isomerization occurs. The highest degree of isomerization was observed in kefir samples relative to other samples. However, from the results obtained, it is not possible to estimate which amino acid is most susceptible to the racemization process, since different samples contained different D-isomers of amino acids. The smallest amount of D-isomers is found in milk that has not undergone any industrial processing. Studies have shown that technological processing of milk inevitably leads to the formation of D-isomers of amino acids, and this, in turn, at least reduces the nutritional and biological value of the product, which makes it necessary to conduct deeper studies in this direction to establish the most important factors in the process of racemization of amino acids in food products.

2021 ◽  
Vol 5 (1) ◽  
pp. 47-60
Author(s):  
Maria Oliinyk ◽  
Nadya Dzyuba ◽  
Victoria Stepanova

Background. An important problem of modern society is to provide the population with food products that guarantee a higher standard of living and health. The field of HoReCa (hotel and restaurant business) does not sell enough healthy food products, therefore it is important to develop health-promoting food products. Among the wide range of food products, whipped dessert products are in great demand among consumers. The work is devoted to the development of formulation for aerated desserts, namely mousses of protective action, which have pronounced ergogenic properties that can increase efficiency, accelerate recovery, protect the body from stress. When developing the composition of mousses, we paid considerable attention to the study of the nutrient composition of the raw material, its changes during the technological processes of product development. The devepoled mousse formula includes the food additive collagen hydrolyzate the functional property of which is the renewal of intra-articular fluid and the construction of cartilage. Also, the collagen hydrolyzate promotes collagen production and can also be used to prevent the development of degenerative conditions of the musculoskeletal system. Objective. We aimed to design formulations for the production of protective mousses with the optimal ratio of basic nutrients and by supplementation with an additional component – collagen hydrolyzate – to increase the nutritional and biological value of finished products, as well as to expand the range of health food products, in particular aerated desserts. Methods. We optimized the mousses formulation taking into account the recommendations for the daily human need for the main macronutrients using mathematical modeling employing MS Excel. The qualitative and quantitative composition of microbiota during storage were analysed in accordance with DSTU 4503:2005 "Cheese products. General technical conditions". The organoleptic evaluation was performed using the sensory method on indicators according to DSTU 3718:2007 "Food concentrates. Sweet dishes, jellies, mousses, puddings, milk concentrates. General technical conditions". High-performance liquid chromatography was used to determine the micronutrient content. Results. We analysed such indicators of mousses as amino acid score and macronutrient content. The study of the amino acid composition showed that the consumption of 100 g of mousses "Cream-cheese" and "Strawberry" satisfies the daily human need in valine by 12.97% and 5.93% respectively. The developed products have a high content of all essential for the human body micronutrients, namely sulfur, calcium, phosphorus and potassium. We found that the shelf-life of mousses is 5 days at the temperature of 5 ± 1 °C in a glass container. Such microorganisms as bacteria of the Escherichia coli group, Staphylococcus aureus, Salmonella spp. were not detected during the entire shelf-life, that meets the requirements of regulatory documents and indicates the sanitary cleanliness and safety of the products. We have experimentally established the rational amount of collagen hydrolyzate food additive that is 3% by weight of the prescription composition of the product. Conclusions. We developed the mousse formulations comprised the supplement of a food additive of collagen hydrolyzate, which made it possible to obtain products balanced in biological value and with improved consumer properties, taking into account the norms for a person's daily need for basic macronutrients. We obtained products of high consumer quality and biological value by supplementation the recipe composition with a collagen hydrolyzate.


Author(s):  
Alevtina Yugay ◽  
Tatyana Boitsova ◽  
Alexander Pechnikov

The article considers the problem of the rational use of aquatic biological resources in the modern fishing process, which can be partially solved by the complex processing of hydrobionts, the by-catch being underutilized. Gobies or sculpins make about 22% of the by-catch in the catch of commercial fish species in the Far Eastern fishery basin. It is a promising fishing object, the biological value of which was studied earlier and proved in the recent studies. Despite the available reserves, gobies are not used for developing the food products or feed flour. The frequent reasons for low demand for products from such non-commercial raw materials can be: the lack of modern data on the chemical composition of the edible part, data on biological safety, methods of technological processing of raw materials and technology for obtaining food products. There are presented the study results on the size, mass and technological characteristics of Far Eastern stag-horn sculpin belonging to gobies Cottidae Gymnocanthus (Gymnocanthus Herzensteini). There is shown the relationship between the fish mass and the mass of muscle tissue, between the fish length and weight, and the fish weight and mass of the head. The yield of secondary raw materials (heads, entrails, bones, fins) has been determined. Based on the conducted chemical analysis, it was found out that Far Eastern staghorn sculpin belongs to the protein species of fish (19%) with a low lipid content (up to 2%). For the first time, the amino acid and fatty acid composition of proteins and lipids of fish muscle tissue has been investigated. It has been stated that the muscle tissue contains all essential amino acids, the rate of which is more than 100%. The objective indicators of the biological value of muscle tissue proteins were determined: the coefficients of difference between the amino acid rate, utility of amino acids, protein-water and lipid-protein coefficients were calculated. The content of macro- and micro-elements has been studied. It was inferred that the maximum permissible concentration of arsenic, cadmium, mercury and lead do not exceed the maximum permissible level.


2018 ◽  
Vol 3 ◽  
pp. 25-32
Author(s):  
Svitlana Belinska ◽  
Nataliia Kamienieva ◽  
Stanislava Levytska ◽  
Sergiy Rogalskiy

A wide range of fresh fruits and vegetables grown in different geographical areas and represented in international trade networks has changed the consumers' approaches to their choice. The determining criterion of choice is the biological value of plant raw materials, is determined by the content of amino acids, vitamins, mineral elements, β-carotene, which play a significant role in ensuring the functioning of the human body. The chemical composition of fruits and vegetables is highly variable and depends on the type, variety of vegetables, agro climatic conditions of their cultivation, storage characteristics and requires study. The study of the amino acid composition and biological value of the protein of the broccoli varieties of French and Dutch selections, which are regionalized in Ukraine, will determine the most promising varieties in order to provide the population with full-fledged proteins of plant origin. The amino acid composition of the protein of the broccoli Parthenon, Belstar F1, Quinta F1, Monaco F1 is regionalized and suitable for cultivation in different geographical regions of Ukraine. Calculation of the amino acidic score and biological value of the broccoli cabbage protein on which the varieties were ranked. 8 indispensable and 8 dispensable amino acids are identified and quantified. It is found that the greatest content of indispensable amino acids is characteristic for cabbage varieties Parthenon (41.95 mg/100 mg protein) and Belstar F1 (42.26 mg/100 mg protein). All the investigated varieties of broccoli cabbage don’t differ significantly in this indicator. A high content of glutamic acid (from 16.27 to 18.43 mg/100 mg protein), aspartic acid (from 9.54 to 10.56 mg/100 mg protein), arginine (from 6.02 to 6.90 mg) is found in the dispensable amino acids in broccoli cabbage varieties/100 mg). The calculated amino acid scores show that the broccoli cabbage protein is a valuable source of isoleucine, methionine, phenylalanine and tryptophan. The score of methionine, tryptophan and isoleucine ranges from 165.1 % to 183.1 %; from 121.0 to 156.0 % and from 115.3 to 127.8 % respectively. Species of broccoli cabbage are identified, the protein of which has the highest biological value. The performed calculations confirm that the highest biological value is possessed by the broccoli cabbage protein of Quinta F1 variety (64.2 %). This variety is the most balanced in its amino acid composition compared to other varieties. The biological value of the protein of the varieties of Monaco F1, the Parthenon is different and amounted to 63.2 % and 63.1 %, respectively. The lowest biological value is found for the protein Belstar F1 – 60.5 %. The research results of the amino acid composition and biological value of the broccoli cabbage protein of varieties bred and grown in different countries will contribute to the expansion of the scientific database on the effect of climatic growing conditions on the biological value of the broccoli cabbage protein. The obtained results can also be useful for specialists in the agrarian sector and the fruit and vegetable industry.


2021 ◽  
Vol 22 (12) ◽  
pp. 6198
Author(s):  
Aleksandra A. Ageeva ◽  
Ilya M. Magin ◽  
Alexander B. Doktorov ◽  
Victor F. Plyusnin ◽  
Polina S. Kuznetsova ◽  
...  

The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer’s and Parkinson’s diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor–acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole–dipole interaction in the secular equation.


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
M. Murwantoko ◽  
Chio Oka ◽  
Masashi Kawaichi

HtrA which is characterized by the combination of a trypsin-like catalytic domain with at least one C-terminalPDZ domain is a highly conserved family of serine proteases found in a wide range of organisms. However theidentified HtrA family numbers varies among spesies, for example the number of mammalian, Eschericia coli,fruit fly-HtrA family are 4, 3 and 1 gene respectively. One gene is predicted exist in zebrafish. Since no completeinformation available on zebrafish HtrA, in this paper zebrafish HtrA (zHtrA) gene was analyzed. The zHtrA isbelonged to HtrA1 member and predicted encodes 478 amino acids with a signal peptide, a IGF binding domain,a Kazal-type inhibitor domain in the up stream of HtrA-bacterial homolog. At the amino acid sequence the zHtrA1showed the 69%, 69%, 68%, 54% and 54% with the rat HtrA1, mouse HtrA1, human HtrA1, human HtrA3 andmouse HtrA4 respectively. The zHtrA1 is firstly expressed at 60 hpf and mainly in the vertebral rudiments in thetail region.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (3) ◽  
pp. 205-213
Author(s):  
N. V. Linovskaya ◽  
E. V. Mazukabzova ◽  
O. S. Rudenko ◽  
T. V. Savenkova

Milk chocolate is particularly popular with different age groups. It is characterized by low protein content with a large amount of fats and carbohydrates determining the food imbalance of the product. In conditions of high-grade animal proteins deficiency the selection of high-quality protein-containing ingredients for food production is very relevant. The aim of this work is to study the protein adequacy of various components of milk chocolate to enhance its biological value. The amino acid scale method has been used to assess the biological value of proteins; it is based on the determination of amino acid (chemical) score. It has been found that the limiting biological value amino acid for classical white raw ingredients of milk chocolate (cocoa products and milk powder) is methionine + cysteine. For constructing chocolate formulas with increased biological value it is advisable to use protein-containing raw materials (whey protein concentrate, oat flour, etc.) to compensate for the limiting amino acids. The indicator of amino acids utilitarianity of proteins of raw milk chocolate components has been calculated. On the basis of the utilitarian index we have established the coefficient of utilitarian of the amino acid composition of the raw materials characterizing essential amino acids' balance. We have determined the biological value of protein and the amino acid composition imbalance coefficient. It has been found that the amino acid composition of milk and whey protein concentrates is most balanced compared to the amino acid composition of traditional protein-containing raw components of milk chocolate. The limiting acid of whey protein concentrate is valine, which makes its use in the manufacture of chocolate products more attractive compared to milk protein concentrate (the limiting amino acid is methionine + cysteine). In the group of vegetable non-conventional raw materials oat and buckwheat flour are characterized by the best indicators of biological value. The amino acid adequacy of oat flour is comparable to the qualitative protein indicators of cocoa products, the limiting amino acid is lysine. Buckwheat flour is characterized by the smallest imbalance in amino acid composition, which distinguishes the proteins of this raw material with the highest degree of digestibility compared with the proteins of all the studied protein-containing components of milk chocolate.


2021 ◽  
Author(s):  
Bharti Koshti ◽  
Ramesh Singh ◽  
Vivekshinh Kshtriya ◽  
Shanka Walia ◽  
Dhiraj Bhatia ◽  
...  

<p>.<br></p><p>The self-assembly of single amino acids is very important topic of research since there are plethora of diseases like phenylketonuria, tyrosinemia, hypertryptophanemia, hyperglycinemia, cystinuria and maple syrup urine disease to name a few which are caused by the accumulation or excess of amino acids. These are in-born errors of metabolisms (IEM’s) which are caused due to the deficiency of enzymes involved in catabolic pathways of these enzymes. Hence, it is very pertinent to understand the fate of these excess amino acids in the body and their self-assembling behaviour at molecular level. From the previous literature reports it may be surmised that the single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine assemble to amyloid like structures, and hence have important implications in the pathophysiology of IEM’s like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. In this manuscript we report the self-assembly of lysine hydrocholride to fiber like structures in deionized water. It could be observed that lysine assemble to globular structures in fresh condition and then gradually changes to fiber like morphologies by self-association over time after 24 hours. These fibers gradually change to tubular morphologies after 3 day followed by fractal irregular morphologies in 10 and 15 days respectively. Notably, lysine exists as positively charged amino acid at physiological pH and the amine groups in lysine remain protonated. Hence, the self-assembling properties of lysine hydrochloride in deionized water is also pertinent and give insights into the fate of this amino acid in body in case it remains unmetabolized. Further, MTT assays were done to analyse the toxicities of these aggregates and the assay suggest their cytotoxic nature on SHSY5Y neural cell lines. Hence, the aggregation of lysine may be attributed to the pathological symptoms caused in diseases like hyperlysinemia which is associated with the neurological problems like seizures and short-term memory as observed in case of amyloid diseases like Parkinson’s and Alzheimer’s to name a few.</p>


Author(s):  
Alan Kelly

Proteins are, in my view, the most impressive molecules in food. They influence the texture, crunch, chew, flow, color, flavor, and nutritional quality of food. Not only that, but they can radically change their properties and how they behave depending on the environment and, critically for food, in response to processes like heating. Even when broken down into smaller components they are important, for example giving cheese many of its critical flavor notes. Indeed, I would argue that perhaps the most fundamental phenomenon we encounter in cooking or processing food is the denaturation of proteins, as will be explained shortly. Beyond food, the value of proteins and their properties is widespread across biology. Many of the most significant molecules in our body and that of any living organism (including plants and animals) are proteins. These include those that make hair and skin what they are, as well as the hemoglobin that transports oxygen around the body in our blood. Proteins are built from amino acids, a family of 20 closely related small molecules, which all have in chemical terms the same two ends (chemically speaking, an amino end and an acidic end, hence the name) but differ in the middle. This bit in the middle varies from amino acid to amino acid, from simple (a hydrogen atom in the case of glycine, the simplest amino acid) to much more complex structures. Amino acids can link up very neatly, as the amino end of one can form a bond (called a peptide bond) with the acid end of another, and so forth, so that chains of amino acids are formed that, when big enough (more than a few dozen amino acids), we call proteins. Our bodies produce thousands of proteins for different functions, and the instructions for which amino acids combine to make which proteins are essentially what the genetic code encrypted in our DNA specifies. We hear a lot about our genes encoding the secrets of life, but what that code spells is basically P-R-O-T-E-I-N. Yes, these are very important molecules!


1969 ◽  
Vol 15 (2) ◽  
pp. 154-161 ◽  
Author(s):  
K Van Dyke ◽  
C Szustkiewicz

Abstract An automated system for the determination of the L-α form of the majority of amino acids is presented. The method is based upon oxidative deamination of the amino acid coupled with oxidation of o-dianisidine by hydrogen peroxide. This procedure can be used comparatively for the determination of a mixture of L-α-amino acids or for the majority of separated L-α-amino acids (especially in conjunction with column separations from urine and blood which give falsely positive identification with ninhydrin detection). The stereospecific nature of the L-α-amino acid oxidase enables the investigator to quantitate the amount of L-α-amino acid in the presence of the D-α form. From an academic viewpoint, the extreme sensitivity and wide range of the detection system make it advantageous for the study of the enzyme itself. This automated method also may be employed to follow enzymatic reactions—e.g., those catalyzed by peptidases or racemases. The methodology is extremely convenient with good reagent stability and is much more sensitive than manometric technics.


2015 ◽  
Vol 8 ◽  
pp. IJTR.S22444
Author(s):  
Katsumi Shibata ◽  
Tsutomu Fukuwatari ◽  
Tomoyo Kawamura

We reported previously that the pellagragenic property of corn protein is not only low L-tryptophan concentration but also the lower conversion percentage of L-tryptophan to nicotinamide; the amino acid composition greatly affected the conversion percentage. The amino acid value of wheat protein is lower than that of rice protein. In the present study, we compare the conversion percentages of L-tryptophan to nicotinamide between wheat protein and rice protein diets in growing rats. The body weight gain for 28 days in rats fed with a 10% amino acid mixture diet with wheat protein was lower than that of rats fed with a 10% amino acid diet with rice protein (68.1 ± 1.6 g vs 108.4 ± 1.9 g; P < 0.05). The conversion percentage of L-tryptophan to nicotinamide was also lower for the wheat protein diet compared with the rice protein diet (1.44 ± 0.036% vs 2.84 ± 0.19%; P < 0.05). The addition of limiting amino acids (L-isoleucine, L-lysine, L-tryptophan, L-methionine, L-threonine) to the wheat protein diet improved growth and the conversion percentage. In conclusion, our result supports the thinking that the composition of amino acids affects the conversion ratio of L-tryptophan to nicotinamide.


Sign in / Sign up

Export Citation Format

Share Document