Crop Response to Phosphate Fertilization and to Residual Phosphate Levels: I. Field Experiments 1

1972 ◽  
Vol 64 (5) ◽  
pp. 588-591 ◽  
Author(s):  
M. Giskin ◽  
J. Hagin ◽  
U. Kafkafi
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1161
Author(s):  
Roland Gerhards ◽  
Fructueuse N. Ouidoh ◽  
André Adjogboto ◽  
Vodéa Armand Pascal Avohou ◽  
Berteulot Latus Sètondji Dossounon ◽  
...  

Although clear evidence for benefits in crop production is partly missing, several natural compounds and microorganisms have been introduced to the market as biostimulants. They are supposed to enhance nutrient efficiency and availability in the rhizosphere, reduce abiotic stress, and improve crop quality parameters. Biostimulants often derive from natural compounds, such as microorganisms, algae, and plant extracts. In this study, the commercial plant extract-based biostimulant ComCat® was tested in two field experiments with maize in the communities of Banikoara and Matéri in Northern Benin and six pot experiments (four with maize and two with winter barley) at the University of Hohenheim in Germany. Maize was grown under nutrient deficiency, drought, and weed competition, and winter barley was stressed by the herbicide Luximo (cinmethylin). ComCat® was applied at half, full, and double the recommended field rate (50, 100, and 200 g ha−1) on the stressed and unstressed control plants as leaf or seed treatment. The experiments were conducted in randomized complete block designs with four replications. The above-ground biomass and yield data of one experiment in Benin were collected. The biostimulant did not promote maize and winter barley biomass production of the unstressed plants. When exposed to stress, ComCat@ resulted only in one out of eight experiments in higher barley biomass compared to the stressed treatment without ComCat® application. There was a reduced phytotoxic effect of cinmethylin after seed treatment with ComCat®. Crop response to ComCat® was independent of the application rate. Basic and applied studies are needed to investigate the response of crops to biostimulants and their mechanisms of action in the plants before they should be used in practical farming.


2010 ◽  
Vol 20 (4) ◽  
pp. 772-777 ◽  
Author(s):  
Orville C. Baldos ◽  
Joseph DeFrank ◽  
Glenn Sakamoto

Field experiments were conducted to assess the tolerance of seashore dropseed (Sporobolus virginicus) to pre- and postemergence herbicides labeled for roadside right-of-way use. Dithiopyr (0.25 and 0.50 lb/acre a.i.), trifluralin + isoxaben (2.0 + 0.5 and 4.0 + 1.0 lb/acre a.i.), oxyfluorfen (0.25 and 0.50 lb/acre a.i.), oxadiazon (2.0 and 4.0 lb/acre a.i.), and granular table salt (99% sodium chloride, 1% sodium silicoaluminate; 83% of particles 0.5–0.25 mm in diameter, 400 lb/acre a.i.) were applied at 2 and 84 days after transplanting (DAT). Pre-emergence weed control with crop response measures as visual foliar injury ratings and aboveground biomass accumulation were recorded 38 days after the second application of herbicides (DAH2). Crop response to postemergence herbicides aminopyralid (1.10 lb/acre a.i.), triclopyr (3.0 lb/acre a.i.), a prepackaged mix of carfentrazone + (4-chloro-2-methylphenoxy)acetic acid + mecoprop + dicamba (0.02 + 1.11 + 0.22 + 0.11 lb/acre a.i.), and sulfosulfuron (0.06 lb/acre a.i.) applied at 70 and 98 DAT included visual foliar injury ratings and aboveground biomass accumulation at 28 DAH2. Although all pre-emergence herbicides (except table salt) exhibited acceptable weed control ratings, only oxadiazon and oxyfluorfen showed exceptional weed control and safety. The postemergence herbicide sulfosulfuron was the least injurious to seashore dropseed. The mixture of carfentrazone + (4-chloro-2-methylphenoxy)acetic acid + mecoprop + dicamba and triclopyr were the most injurious to seashore dropseed and should only be used as a directed spray treatment. An unintended overapplication of aminopyralid was phytotoxic, but it did not lead to complete plant death at 28 DAH2. These data identified oxadiazon, oxyfluorfen, and sulfosulfuron as safe and effective for establishing transplanted seashore dropseed plugs.


2012 ◽  
Vol 93 (1) ◽  
pp. 13-14
Author(s):  
J. Petersen ◽  
I. K. Thomsen ◽  
L. Mattsson ◽  
E. M. Hansen ◽  
B. T. Christensen

2012 ◽  
Vol 93 (1) ◽  
pp. 1-12 ◽  
Author(s):  
J. Petersen ◽  
I. K. Thomsen ◽  
L. Mattsson ◽  
E. M. Hansen ◽  
B. T. Christensen

1995 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Jim R. Moyer

Five sulfonylurea herbicides were applied to Typic Boroll soil with pH 8.0 and 2% organic matter in the field and growth chamber to assess their residual effects on following crops. Under irrigated conditions, triasulfuron at 22 g/ha reduced the growth of alfalfa, canola, corn, lentil, pea, potato, and sugarbeet the year after application but caused no injury after two years. Alfalfa GR50(rate required to reduce growth by 50%) values immediately after application of chlorsulfuron, triasulfuron, and metsulfuron were < 2.2 g/ha and similar in the growth chamber and field. Alfalfa and canola GR50values immediately after thifensulfuron application in the growth chamber were ≥ 90 g/ha. Alfalfa, canola, flax, and sugarbeet GR50for tribenuron in the growth chamber were < 4 g/ha. Crop response curves developed by growth chamber experiments could replace many of the multiple site and crop field experiments now required to develop recropping guidelines for residual herbicides.


1990 ◽  
Vol 4 (4) ◽  
pp. 838-842 ◽  
Author(s):  
James E. Hill ◽  
Stacey R. Roberts ◽  
D. E. Bayer ◽  
J. F. Williams

In five field experiments from 1986 to 1988, herbicides were evaluated alone and in combinations for weed control in water-seeded rice. Combinations of bensulfuron with either molinate or thiobencarb applied into the paddy water at the 2-leaf stage of rice, controlled all broadleaf and sedge weeds, and 92% or more early watergrass. These combinations were equivalent to a commercial standard of molinate at the 2-leaf stage followed by a separate application of bentazon to the drained paddy at midtillering.


2017 ◽  
Vol 9 (2) ◽  
pp. 799-804
Author(s):  
N. B. Ghube ◽  
A. D. Kadlag ◽  
B. M. Kamble

Studies on Soil Test Crop Response based Integrated Plant Nutrition System (STCR - IPNS) were conducted adopting the Inductive cum Targeted yield model onInceptisols (VerticHaplustepts) in Rahuri, District Ahemadnagar, Maharashtra, India in order to develop fertilizer prescriptions through IPNS for the desired yield targets of preseasonal sugarcane ratoon. The field experiments were carried out with maize as gradient crop for plant cane and after harvest of plant cane, pre-seasonal sugarcane ratoon as test crop. Using the data on yield, initial soil test values on available nitrogen (N), phosphorus (P), potassium (K), doses of fertilizers and farmyard manure (FYM) applied and NPK uptake, the basic parameters viz., nutrient requirement, contribution from soil, fertilizers and FYM were computed. It was found that 1.56 kg N, 0.58 kg P and 1.04 kg K were required for producing one tonnemillable cane of preseasonal ratoon sugarcane. The per cent contributions of N, P and K from soil and FYM for preseasonal sugarcane ratoon were 37.65, 85.88 and 19.82 per cent and 11.83, 10.88 and 12.24 per cent, respectively. Making use of these basic parameters, fertilizer prescription equations were developed for pre-seasonal sugarcane ratoon (var. C0-94012) and an estimate of fertilizer doses formulated for a range of soil test values and desired yield targets under NPK alone and IPNS (NPK plus FYM).


2012 ◽  
Vol 26 (4) ◽  
pp. 714-717
Author(s):  
Doug Doohan ◽  
Joel Felix

Weed management in green onion continues to be a challenge for vegetable growers in Ohio. Field experiments were conducted from 2005 to 2009 to evaluate oxyfluorfen efficacy on common purslane and prostrate pigweed and green onion tolerance when applied POST at 0, 30, 70, 105, and 290 g ai ha−1 approximately 3 wk after planting. No crop injury was observed from any of the herbicide rates, except in 2009 when 209 g ha−1 oxyfluorfen resulted in 10% injury at 7 d after treatment. The transient injury did not reduce green onion yield. Green onion yield ranged from 1.8 to 2.2 kg plot−1 in 2006 and 1.3 to 1.5 kg plot−1 in 2009. In 2007 yield increased linearly from 1.9 to 3.0 kg plot−1 with oxyfluorfen rates of 0 to 105 g ha−1. Common purslane control increased as the rate of oxyfluorfen increased. Application of oxyfluorfen at 70 to 105 g ha−1 provided the best control of common purslane, ranging from 61 to 95% across the years. Similar control results were observed for prostrate pigweed. Prostrate pigweed control with 70 to 105 g ha−1 ranged from 40 to 93% from 2005 to 2009. These results suggest that green onion tolerates oxyfluorfen rates of 70 to 105 g ha−1, and these rates provide common purslane and prostrate pigweed control that growers would find acceptable. Registration of the water-based formulation of oxyfluorfen would provide growers an opportunity to control weeds and reduce the need for hand labor.


Sign in / Sign up

Export Citation Format

Share Document