scholarly journals List of Volunteered Poster Presentations at the Symposium on Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture, 1 Dec. 1988, Anaheim, CA

2005 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Roger J. Francey

Environmental Context.Excessive levels of carbon dioxide are accumulating in the atmosphere, principally from burning fossil fuels. The gas is linked to the enhanced greenhouse effect and climate change, and is thus monitored carefully, along with other trace gases that reflect human activity.The rate of growth of carbon dioxide has increased gradually over the past century, and more rapidly in the last decade. Teasing out fossil emissions from changes due to wildfires and to natural exchange with plants and oceans guide global attempts in reducing emissions.


2017 ◽  
Vol 17 (20) ◽  
pp. 12303-12325 ◽  
Author(s):  
Anastasia Vasileva ◽  
Konstantin Moiseenko ◽  
Andrey Skorokhod ◽  
Igor Belikov ◽  
Vladimir Kopeikin ◽  
...  

Abstract. Boreal forest fires are currently recognized as a significant factor in climate change and air quality problems. Although emissions of biomass burning products are widely measured in many regions, there is still lack of information on the composition of wildfire emissions in Siberia, a region known for its severe wildfire activity. Emission ratios (ERs) are important characteristics of wildfire emissions as they may be used to calculate the mass of species emitted into the atmosphere due to combustion of a known mass of biomass fuel. We analyze observations of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), total nonmethane hydrocarbons (NMHCs), nitrogen oxides NOx ( =  NO + NO2), particulate matter (PM3), and black carbon (BC) within two forest fire plume transects made by the moving railway observatory during TRanscontinental Observations Into the Chemistry of the Atmosphere (TROICA) expeditions. Slopes in linear regressions of excess levels of the pollutants are used to obtain ERCO ∕ CO2 = 10–15 %, ERCH4 ∕ CO = 8–10 %, ERNMHC ∕ CO = 0.11–0.21 % ppmC ppmC−1, ERNOx ∕ CO = 1.5–3.0  ppb ppm−1, ERPM3 ∕ CO = 320–385 ng m−3 (µg m−3)−1, and ERBC ∕ CO =  6.1–6.3 µg m−3 ppm−1, which fall within the range of uncertainty of the previous estimates, being at the higher edge for ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM3 ∕ CO and at the lower edge for ERNOx ∕ CO. The relative uncertainties comprise 5–15 % of the estimated ERCH4 ∕ CO, ERNMHC ∕ CO, and ERPM ∕ CO and 10–20 % of ERNOx ∕ CO, ERCO ∕ CO2, and ERBC ∕ CO. The uncertainties are lower than in many other similar studies and associated mainly with natural variability of wildfire emissions.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Human Ecology ◽  
2021 ◽  
Author(s):  
Michael Schnegg ◽  
Coral Iris O’Brian ◽  
Inga Janina Sievert

AbstractInternational surveys suggest people increasingly agree the climate is changing and humans are the cause. One reading of this is that people have adopted the scientific point of view. Based on a sample of 28 ethnographic cases we argue that this conclusion might be premature. Communities merge scientific explanations with local knowledge in hybrid ways. This is possible because both discourses blame humans as the cause of the changes they observe. However, the specific factors or agents blamed differ in each case. Whereas scientists identify carbon dioxide producers in particular world regions, indigenous communities often blame themselves, since, in many lay ontologies, the weather is typically perceived as a local phenomenon, which rewards and punishes people for their actions. Thus, while survey results show approval of the scientific view, this agreement is often understood differently and leads to diverging ways of allocating meaning about humans and the weather.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Antonín Lupíšek ◽  
Tomáš Trubačík ◽  
Petr Holub

One of the major anthropogenic sources of greenhouse gases is the operation of building stock. Improving its energy efficiency has the potential to significantly contribute to achieving climate change mitigation targets. The purpose of this study was to roughly estimate such potential for the operation of the national building stock of Czechia to steer the national debate on the development of related national plans. The estimation is based on a simplified energy model of the Czech building stock that consists of sub-models of residential and nonresidential building stocks, for which their future energy consumptions, shares of energy carriers and sources, and emission factors were modeled in four scenarios. Uncertainties from the approximation of the emission factors were investigated in a sensitivity analysis. The results showed that the operation of the Czech building stock in 2016 totaled 36.9 Mt CO2, which represented 34.6% of the total national carbon dioxide emissions. The four building stock scenarios could produce reductions in the carbon dioxide emissions of between 28% and 93% by 2050, when also considering on-side production from photovoltaics. The implementation of the most ambitious scenario would represent a drop in national CO2 yearly emissions by 43.2% by 2050 (compared to 2016).


Sign in / Sign up

Export Citation Format

Share Document