A Field Study of Soil Water Depletion Patterns in Presence of Growing Soybean Roots: III. Rooting Characteristics and Root Extraction of Soil Water

1975 ◽  
Vol 39 (3) ◽  
pp. 437-444 ◽  
Author(s):  
L. M. Arya ◽  
G. R. Blake ◽  
D. A. Farrell
1999 ◽  
Vol 34 (7) ◽  
pp. 1151-1157
Author(s):  
Adaucto Bellarmino de Pereira-Netto ◽  
Antonio Celso Novaes de Magalhães ◽  
Hilton Silveira Pinto

Tropical kudzu (Pueraria phaseoloides (Roxb.) Benth., Leguminosae: Faboideae) is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC), stomatal conductance (g) and temperature (T L) in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O).g (dry soil)-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC). The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L) rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.


2018 ◽  
Vol 417 ◽  
pp. 137-143 ◽  
Author(s):  
Yu Liu ◽  
Hai-Tao Miao ◽  
Ze Huang ◽  
Zeng Cui ◽  
Honghua He ◽  
...  

1994 ◽  
Vol 37 (5) ◽  
pp. 1491-1497 ◽  
Author(s):  
F. R. Lamm ◽  
D. H. Rogers ◽  
H. L. Manges

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


2005 ◽  
Vol 69 (1) ◽  
pp. 197 ◽  
Author(s):  
T. S. Moroke ◽  
R. C. Schwartz ◽  
K. W. Brown ◽  
A. S. R. Juo

Sign in / Sign up

Export Citation Format

Share Document