The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

2009 ◽  
Vol 8 (4) ◽  
pp. 846-857 ◽  
Author(s):  
Stefan J. Kollet ◽  
Ivana Cvijanovic ◽  
Dirk Schüttemeyer ◽  
Reed M. Maxwell ◽  
Arnold F. Moene ◽  
...  
2009 ◽  
Vol 48 (5) ◽  
pp. 982-996 ◽  
Author(s):  
Joseph G. Alfieri ◽  
Peter D. Blanken ◽  
David Smith ◽  
Jack Morgan

Abstract Grassland environments constitute approximately 40% of the earth’s vegetated surface, and they play a key role in a number of processes linking the land surface with the atmosphere. To investigate these linkages, a variety of techniques, including field and modeling studies, are required. Using data collected at the Central Plains Experimental Range (CPER) in northeastern Colorado from 25 March to 10 November 2004, this study compares two common ways of measuring turbulent fluxes of latent heat, sensible heat, and carbon dioxide in the field: the eddy covariance (EC) and Bowen ratio energy balance (BREB) methods. The turbulent fluxes measured by each of these methods were compared in terms of magnitude and seasonal behavior and were combined to calculate eddy diffusivities and examine turbulent transport. Relative to the EC method, the BREB method tended to overestimate the magnitude of the sensible heat, latent heat, and carbon dioxide fluxes. As a result, substantial differences in both the diurnal pattern and long-term magnitudes of the water and carbon budgets were apparent depending on which method was used. These differences arise from (i) the forced closure of the surface energy balance and (ii) the assumption of similarity between the eddy diffusivities required by the BREB method. An empirical method was developed that allows the BREB and EC datasets to be reconciled; this method was tested successfully using data collected at the CPER site during 2005. Ultimately, however, the BREB and EC methods show important differences that must be recognized and taken into account when analyzing issues related to the energy, water, or carbon cycles.


2012 ◽  
Vol 16 (7) ◽  
pp. 2095-2107 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates – up till present – cannot be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a large aperture scintillometer (LAS), and converting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then compared to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, the performance of ETLook for the energy balance terms has been assessed at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown.


2020 ◽  
Vol 24 (4) ◽  
pp. 1781-1803
Author(s):  
Bouchra Ait Hssaine ◽  
Olivier Merlin ◽  
Jamal Ezzahar ◽  
Nitu Ojha ◽  
Salah Er-Raki ◽  
...  

Abstract. Thermal-based two-source energy balance modeling is essential to estimate the land evapotranspiration (ET) in a wide range of spatial and temporal scales. However, the use of thermal-derived land surface temperature (LST) is not sufficient to simultaneously constrain both soil and vegetation flux components. Therefore, assumptions (about either soil or vegetation fluxes) are commonly required. To avoid such assumptions, an energy balance model, TSEB-SM, was recently developed by Ait Hssaine et al. (2018b) in order to consider the microwave-derived near-surface soil moisture (SM), in addition to the thermal-derived LST and vegetation cover fraction (fc) normally used. While TSEB-SM has been successfully tested using in situ measurements, this paper represents its first evaluation in real life using 1 km resolution satellite data, comprised of MODIS (MODerate resolution Imaging Spectroradiometer) for LST and fc data and 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) observations. The approach is applied during a 4-year period (2014–2018) over a rainfed wheat field in the Tensift basin, central Morocco. The field used was seeded for the 2014–2015 (S1), 2016–2017 (S2) and 2017–2018 (S3) agricultural seasons, while it remained unploughed (as bare soil) during the 2015–2016 (B1) agricultural season. The classical TSEB model, which is driven only by LST and fc data, significantly overestimates latent heat fluxes (LE) and underestimates sensible heat fluxes (H) for the four seasons. The overall mean bias values are 119, 94, 128 and 181 W m−2 for LE and −104, −71, −128 and −181 W m−2 for H, for S1, S2, S3 and B1, respectively. Meanwhile, when using TSEB-SM (SM and LST combined data), these errors are significantly reduced, resulting in mean bias values estimated as 39, 4, 7 and 62 W m−2 for LE and −10, 24, 7, and −59 W m−2 for H, for S1, S2, S3 and B1, respectively. Consequently, this finding confirms again the robustness of the TSEB-SM in estimating latent/sensible heat fluxes at a large scale by using readily available satellite data. In addition, the TSEB-SM approach has the original feature to allow for calibration of its main parameters (soil resistance and Priestley–Taylor coefficient) from satellite data uniquely, without relying either on in situ measurements or on a priori parameter values.


2011 ◽  
Vol 8 (6) ◽  
pp. 10863-10894 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates can – up till present – not be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a Large Aperture Scintillometer (LAS), and inverting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes (H) measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then validated by comparing them to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, it is demonstrated that ETLook is able to estimate the energy balance terms for daily time steps at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown. As such, ETLook provides the opportunity to estimate continuous series of the energy balance terms of a large area for daily time steps and can thus e.g. be used as a validation tool for LAS-measurements, whereas LAS is able to estimate the latent heat fluxes (evapotranspiration rates) for a large and heterogeneous catchment at an hourly time step which can be used for the forcing or validation of hydrologic models.


2018 ◽  
Author(s):  
Phillip Harder ◽  
John W. Pomeroy ◽  
Warren D. Helgason

Abstract. Local-scale advection of energy from warm snow-free surfaces to cold snow-covered surfaces is an important component of the energy balance during snowcover depletion. Unfortunately, this process is difficult to quantify in one-dimensional snowmelt models. This manuscript proposes a simple sensible and latent heat advection model for snowmelt situations that can be readily coupled to one-dimensional energy balance snowmelt models. An existing advection parameterization was coupled to a conceptual frozen soil infiltration surface water retention model to estimate the areal average sensible and latent heat advection contributions to snowmelt. The proposed model compared well with observations of latent and sensible heat advection providing confidence in the process parameterizations and the assumptions applied. Snowcovered area observations from unmanned aerial vehicle imagery were used to update and evaluate the scaling properties of snow patch area distribution and lengths. Model dynamics and snowmelt implications were explored within an idealized modelling experiment, by coupling to a one-dimensional energy balance snowmelt model. Dry, snow-free surfaces were associated with negative latent heat advection fluxes that compensated for positive sensible heat advection fluxes and so limited the net influence of advection on snowmelt. Latent and sensible heat advection fluxes both contributed positive fluxes to snow when snow-free surfaces were wet and enhanced net advection contributions to snowmelt. The increased net advection fluxes from wet surfaces typically develop towards the end of snowmelt and offset decreases in the one-dimensional areal average melt energy that declines with snowcovered area. The new model can be readily incorporated into existing one-dimensional snowmelt hydrology and land surface scheme models and will foster improvements in snowmelt understanding and predictions.


1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


Polar Record ◽  
2000 ◽  
Vol 36 (196) ◽  
pp. 3-18 ◽  
Author(s):  
P. Prosek ◽  
M. Janouch ◽  
K. Láska

AbstractThis article presents the results of measurements of the components of ground-surface energy balance (radiation balance, sensible heat flux, latent heat flux, and ground heat flux) taken during the 1994/95 summer season at Poland's Henryk Arctowski Station, King George Island, South Shetland Islands (62°09'42”S, 58°28'10”W). This was the first time that these complex measurements had been taken in the central part of the South Shetlands archipelago. The results are evaluated at the level of daily and seasonal fluctuations. The consequences of energy balance on the temperature conditions of the soil substrata are highlighted. The verification of the degree of influence of a subset of energy-balance components on soil temperature allowed analysis of the relationships among soil temperature, radiation balance, and sensible heat flux. This analysis leads to the conclusion that there is a rapid reaction of the soil temperature to the radiation balance and sensible heat flux to a depth of 5 cm. The boundary atmosphere and soil substrate represent the basic components of the ecotops of the Antarctic vegetation oasis, so these results are interpreted in pedological or botanical studies in the search for environmental influences on the vegetation.


2012 ◽  
Vol 16 (7) ◽  
pp. 1817-1831 ◽  
Author(s):  
F. Alkhaier ◽  
G. N. Flerchinger ◽  
Z. Su

Abstract. Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.


Sign in / Sign up

Export Citation Format

Share Document