scholarly journals Pests and diseases in a changing climate a major challenge for Finnish crop production

2008 ◽  
Vol 20 (1) ◽  
pp. 3 ◽  
Author(s):  
K. HAKALA ◽  
A.O. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA

A longer growing season and higher accumulated effective temperature sum (ETS) will improve crop production potential in Finland. The production potential of new or at present underutilised crops (e.g. maize (Zea mays L.), oilseed rape (Brassica napus L.), lucerne (Medicago sativa L.)) will improve and it will be possible to grow more productive varieties of the currently grown crops (spring wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oats (Avena sativa L.)). Also cultivation of autumn sown crops could increase if winters become milder and shorter, promoting overwintering success. Climatic conditions may on the other hand become restrictive in many ways. For example, early season droughts could intensify because of higher temperatures and consequent higher evaporation rates. Current low winter temperatures and short growing season help restrict the development and spread of pests and pathogens, but this could change in the future. Longer growing seasons, warmer autumns and milder winters may initiate new problems with higher occurrences of weeds, pests and pathogens, including new types of viruses and virus vectors. Anoxia of overwintering crops caused by ice encasement, and physical damage caused by freezing and melting of water over the fields may also increase. In this study we identify the most likely changes in crop species and varieties in Finland and the pest and pathogen species that are most likely to create production problems as a result of climate change during this century.;

Author(s):  
Nicolae HODIŞAN ◽  
Gavrilă MORAR ◽  
Cristina-Maria NEAG

The paper presents the results of the allelopathic effect on the germination and growth of plants, immediately after springing, in the interaction between the invasive species Ambrosia artemisiifolia L. (common ragweed) and five crop species: wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.), rape (Brassica napus L.) and lucerne (Medicago sativa). The tests consisted in applying treatments with aqueous extracts obtained from young Ambrosia artemisiifolia L. plants, as well as from different vegetative organs harvested from mature plants (roots, leaves and seeds). The results show a highly significant inhibiting effect on the germination of wheat, rye, barley and rape seeds and an insignificant one in lucerne seeds. A strong inhibiting effect upon the growth of plants in early stages of vegetation was established in wheat and rape and a stimulation of growth in the same stage of vegetation in barley and lucerne.


2018 ◽  
Vol 98 (5) ◽  
pp. 1139-1149 ◽  
Author(s):  
Kabal S. Gill

Local economic, logistic, soil, and weather conditions have made appropriate rotations vary from one area to another. Seed yield and fertilizer use in rotations were compared with continuous cropping for 6 yr in the southeast Peace region of Alberta, Canada. Canola (C) (Brassica napus L.), wheat (W) (Triticum aestivum L.), pea (P) (Pisum sativum L.), barley (B) (Hordeum vulgare L.), and flax (F) (Linum usitatissimum L.) were grown in 12 treatments [i.e., continuous canola (CC) and wheat (WW) and rotations of W–C, P–W–W, C–W–W, C–C–W, P–C–W, C–P–W, W–B–C, B–W–C, F–W–C, and F–C–W]. Canola yield increased with 1 or 2 yr breaks from canola. Within rotations, there was a trend to lower canola yield on canola stubble compared with other crop stubbles. Wheat yield was generally lower in WW than in rotations. Among rotations, wheat yield tended to be greater on pea stubble compared with canola, wheat, barley, and flax stubbles. Averaged over 2010–2015, the canola yield benefit from rotations was 0.632 Mg ha−1 (19.4%) over CC and the wheat yield benefit from rotations was 0.313 Mg ha−1 (7.2%) over WW. Nitrogen saving was observed when pea was included in rotation.


2008 ◽  
Vol 59 (11) ◽  
pp. 983 ◽  
Author(s):  
M. D. A. Bolland ◽  
R. F. Brennan

Spring wheat (Triticum aestivum L.), lupin (Lupinus angustifolius L.), and canola (Brassica napus L.) are the major crop species grown in rotation on the predominantly sandy soils of south-western Australia. Comparisons among the species for yield responses to applied phosphorus (P), effects of applied P on growth rates of shoots, P response efficiency for shoot and grain production, and the pattern for accumulation of P into shoots during growth and into grain at maturity are rare, or are not known, and were quantified in the glasshouse study reported here. Size and P content (P concentration multiplied by yield) of sown seed were in the order canola < wheat < lupin. Therefore, yield responses to applied P were first observed at ~10 days after sowing (DAS) for canola, ~17 DAS for wheat, and ~60 DAS for lupin. Lupin shoots showed no yield response to applied P at the first harvest at 51 DAS. Otherwise all species showed large yield, P concentration, and P content responses to applied P for all harvests at 51, 78, 87, 101, 121, and 172 DAS. To produce 90% of the maximum grain yield, the relevant data for cropping, lupin required ~67% less P than wheat, canola required ~40% less P than wheat, and canola required ~75% more P than lupin. Growth rates, and P response efficiency, were generally largest for canola, followed by wheat, then lupin. For shoots, P accumulation was in the order lupin > wheat > canola at 51 DAS, canola > wheat > lupin at 78 and 87 DAS, canola > wheat = lupin at 101 DAS, and all 3 species were about similar at 121 DAS. For accumulation of P into shoots plus grain at maturity (172 DAS) the order was canola > lupin > wheat, and for grain only was canola > wheat = lupin.


2012 ◽  
Vol 151 (3) ◽  
pp. 303-321 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
A. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA ◽  
L. VOUTILA ◽  
J. NIEMI ◽  
...  

SUMMARYCrop-based protein self-sufficiency in Finland is low. Cereals dominate the field cropping systems in areas that are also favourable for legumes and rapeseed. The present paper estimated the realistic potential for expanding protein crop production taking account of climatic conditions and constraints, crop rotation requirements, field sizes, soil types and likelihood for compacted soils in different regions. The potential for current expansion was estimated by considering climate change scenarios for 2025 and 2055. By using actual regional mean yields for the 2000s, without expecting any yield increase during the expansion period (due to higher risks of pests and diseases), potential production volumes were estimated. Since rapeseed, unlike grain legumes, is a not a true minor crop, its expansion potential is currently limited. Thus, most potential is from the introduction of legumes into cropping systems. The current 100000 ha of protein crops could be doubled, and areas under cultivation could reach 350000 and 390000 ha as a result of climate warming by 2025 and 2055, respectively. Such increases result mainly from the longer growing seasons projected for the northern cropping regions of Finland. Self-sufficiency in rapeseed could soon increase from 0·25 to 0·32, and then to 0·50 and 0·60 by 2025 and 2055, respectively. If legume production expands according to its potential, it could replace 0·50–0·60 of currently imported soybean meal, and by 2025 it could replace it completely. Replacement of soybean meal is suitable for ruminants, but it presents some problems for pig production, and is particularly challenging for poultry.


1978 ◽  
Vol 58 (1) ◽  
pp. 241-248 ◽  
Author(s):  
J. WADDINGTON

Under greenhouse conditions, incorporating ground straw in the soil at rates between 2,240 and 8,970 kg/ha reduced the emergence of alfalfa (Medicago media Pers. cv. Beaver) significantly (P < 0.05) and bromegrass (Bromus inermis Leyss cv. Magna) slightly, but had no effect on barley (Hordeum vulgare L. cv. Conquest). Rape (Brassica napus L. cv. Target and B. campestris L. cv. Echo) straws were more damaging than wheat (Triticum aestivum L. cv. Manitou) straw. Symptoms of severe nitrogen deficiency appeared early in the growth of barley where straw had been added to the soil. The effect on tillering varied. In one experiment tillers were smaller, in one tillers were larger; but in both, total leaf area produced was much less where 8,970 kg/ha of straw had been added to the soil. Bromegrass showed the same effects but to a lesser degree, probably because of slower growth requiring a smaller supply of nitrogen. Alfalfa growth was apparently unaffected. There was no evidence that the straw of either rapeseed species was more deleterious than wheat straw to crop growth after emergence. It is concluded that straw incorporated in soil affected barley and bromegrass growth by reducing the availability of nitrogen.


2020 ◽  
Author(s):  
Mariano Marcos-Pérez ◽  
Virginia Sánchez-Navarro ◽  
Raúl Zornoza

&lt;p&gt;Including legumes in intercropping systems may be regarded as a sustainable way to improve soil quality, fertility and land productivity, mostly due to facilitation processes and high rhizospheric activity which can mobilize soil nutrients for plants. Improvements in production and soil quality depend on inherent soil properties, climatic conditions, adopted management practices and fertilization, among others. The aim of this study was to assess the effect of the association between broccoli (Brassica oleracea var italica) and fava bean (Vicia fava) grown under different intercropping patterns on crop production, soil organic carbon (SOC), total nitrogen (Nt), soil aggregate stability (SAS) and soil fertility, compared to a broccoli monocrop. We defined a randomised block field experiment with three replications assessing the effect of monocropping, row 1:1 intercropping, row 2:1 intercropping and mix intercropping, with 30% reduction in fertilization in intercropped systems compared to monocrop. Soil sampling took place at harvest in February 2019. Results showed that the broccoli-fava bean intercropping significantly increased the general land production, with similar broccoli yield of 20000 kg ha&lt;sup&gt;-1 &lt;/sup&gt;in all treatments, plus 8000 kg ha&lt;sup&gt;-1&lt;/sup&gt; coming from fava bean. Crop diversification and fava bean cultivation even in monocrop significantly increased SOC and Nt compared to broccoli monocrop. SOC and Nt were 1.06% and 0.09%, respectively, for broccoli monocrop, while they had average values of 1.29% and 0.12%, respectively for the intercropped systems. SAS was also significantly affected by crop diversification, with increases in the proportion of the macroaggregates (size &gt;2 mm) with intercropping. Broccoli monocrop showed an average proportion of these macroaggregates of 9.19%, while they increased up to 17.51% in intercropped systems. CEC was not significantly affected by intercropping SAS showing almost same percentage of aggregates independently of the treatment. Available P significantly increased in intercropped systems, likely due to increased microbial activity with the simultaneous growth of the two crop species. However, no significant effect of intercropping was observed with any other nutrient (Ca, Mg, K, Mn, Cu, Fe, Zn and B), suggesting that microbial communities activated by the crop association are highly related to P mobilization but not so intensively involved in other nutrients. Thus, intercropping systems like broccoli-fava bean association can be regarded as a viable alternative for sustainable crop production while increasing soil fertility despite reducing the addition of external fertilization. However, more crop cycles are needed to confirm this trend.&lt;/p&gt;


2008 ◽  
Vol 18 (3-4) ◽  
pp. 206 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
L. JAUHIAINEN ◽  
K. HAKALA

As the northern hemisphere will experience the greatest increases in temperature and indications of climatic change are already visible in the north (in the 2000s average temperatures exceeded the long-term mean), we sought to establish if there are already signs of increased variability in yield and quality of the major field crops grown under the northernmost European growing conditions: spring and winter cereals (barley Hordeum vulgare L., oat Avena sativa L., wheat Triticum aestivum L., rye Secale cereale L.), spring rapeseed (turnip rape Brassica rapa L., oilseed rape B. napus L.), pea (Pisum sativum L.) and potato (Solanum tuberosum L.). We used long-term yield datasets of FAO for Finland (1960s to date) and MTT Agrifood Research Finland (MTT) Official Variety Trial datasets on yield and quality of major field crops in Finland since the 1970s. Yield variability was exceptionally high in the 1980s and 1990s, but previously and subsequently national yields were clearly more stable. No progressive increase in yield variability was recorded. No marked and systematic changes in variability of quality traits were recorded, except for rapeseed, which exhibited reduced variability in seed chlorophyll content. This may at least partly attribute to the differences in intensity of input use and thereby responsiveness of the crops before and after 1980 and 1990 decades. We also noted that in the 2000s average temperatures were higher than in earlier decades and this was the case for all months of the growing season except June, which represents, however, the most critical phase for yield determination in most of the field crops in Finland. Also in the 2000s precipitation increased in the first three months of the growing season and thereafter decreased, but without signs of significantly increased numbers of heavy showers (extreme rain events). Hence, in general constant, increased average temperatures during the growing seasons of the 2000s were identified, but with reduced yield variability, which was partly attributable to the diminished use of inputs, especially fertilisers.;


Author(s):  
Nicolae HODIŞAN

Iva xanthiifolia Nutt., popularly known as “ierboaie”, is a neophyte invasive species notorious for being an allergenic weed, identified in the west of Romania, in two locations near Oradea, in Bihor County, near the border with Hungary. This species belongs to the allergenic weeds, being considered by some even more dangerous than Ambrosia artemisiifolia L., the two representing in summer the primary source of allergies, or diseases like hay fever, due to the pollen released in the atmosphere.The research is about the results of the allelophatic effect upon the germination and growth of plants, immediately after springing, viewed as the interaction between the species of Iva xanthiifolia and five other crop plants: wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.), rape (Brassica napus L.) and lucerne (Medicago sativa). The experiments that were performed consisted in applying treatments with aqueous extracts obtained from different vegetative organs (roots, leaves, stems and seeds) harvested from Iva xanthiifolia plants. In all cases, the results indicate a rather large inhibitor effect, no matter if the aqueous extracts were obtained from green plants or dehydrated ones.


2007 ◽  
Vol 47 (1) ◽  
pp. 39 ◽  
Author(s):  
N. L. Simpson (née Hill) ◽  
R. McTaggart ◽  
W. K. Anderson ◽  
L. Anderton

Average yield of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in the high rainfall cropping zone (>750 mm) of south Western Australia from 1996 to 2001 was 2.5 t/ha. This is far below the water-limited potential yield (water losses of 110 mm, transpiration efficiency of 20 kg/ha.mm) of 6–8 t/ha. Nutrition of the cereal crops has been regarded as one constraint to reaching the potential yield, although grain yield increases (responses) under conventional management practices (a series of full cultivation operations) have been inconsistent. Three experiments, with a total of five trial sites conducted over two seasons, were carried out to test the response of wheat and barley to fertiliser applications of nitrogen (N), phosphorus (P), potassium (K), sulfur (S) and trace elements (TE). Various combinations of nutrients were applied. These ranged from no fertiliser (nil), to farmer practice (N at rates at 34–82 kg/ha, P at 3–17 kg/ha, K at 0–50 kg/ha and S at 4–11 kg/ha), to nutrients calculated to supply the needs of a 6–8 t/ha cereal crop (N, P, K, S, TE). The aim was to determine whether the supply of non-limiting levels of crop nutrients could raise yields to the potential yield as determined by seasonal rainfall. In the drier seasons experienced in 2001 and 2002 at Arthur River and Cranbrook, with growing season rainfall (May–November) up to about 350 mm, it was possible to raise grain yields to levels at or above the calculated rainfall-limited potential with increased nutrition (4.2 t/ha for barley and 4.5 t/ha for wheat). However, in the wetter environment of Boyup Brook in 2002, where seasonal rainfall was greater than 500 mm, extra nutrition by itself was not sufficient to reach the water-limited potential, even where the yields were increased from 3.5 to 5.2 t/ha for wheat and from 3.9 to 4.5 t/ha for barley. Further experimentation is required to clarify the factors limiting responses to nutrition when the growing season rainfall is greater than 500 mm and thus allow greater confidence in extrapolating these results in the high rainfall cropping zone of Western Australia. In wheat, the highest profits were obtained from the complete fertiliser strategy (N, P, K, S, TE). However, for barley, the greatest profits were not obtained with the highest grain yields and fertiliser strategies due to decreased grain quality.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 172
Author(s):  
Merili Toom ◽  
Sirje Tamm ◽  
Liina Talgre ◽  
Ilmar Tamm ◽  
Ülle Tamm ◽  
...  

Using cover crops in fallow periods of crop production is an important management tool for reducing nitrate leaching and therefore improving nitrogen availability for subsequent crops. We estimated the short-term effect of five cover crop species on the yield of successive spring barley (Hordeum vulgare L.) for two years in Estonia. The cover crop species used in the study were winter rye (Secale cereale L.), winter turnip rape (Brassica rapa spp. oleifera L.), forage radish (Raphanus sativus L. var. longipinnatus), hairy vetch (Vicia villosa Roth), and berseem clover (Trifolium alexandrinum L.). The results indicated that out of the five tested cover crops, forage radish and hairy vetch increased the yield of subsequent spring barley, whereas the other cover crops had no effect on barley yield. All cover crop species had low C:N ratios (11–17), suggesting that nitrogen (N) was available for barley early in the spring.


Sign in / Sign up

Export Citation Format

Share Document