scholarly journals A New High-Pressure Experimental Apparatus to Study Magmatic Processes at Precisely Controlled Redox Conditions

2021 ◽  
2017 ◽  
Author(s):  
Calvin G. Barnes ◽  
◽  
Melanie A. Barnes ◽  
Charlotte M. Allen

2013 ◽  
Vol 21 (01) ◽  
pp. 1350004 ◽  
Author(s):  
KOJI FUMOTO ◽  
TSUYOSHI KAWANAMI ◽  
TAKAO INAMURA

A cold thermal energy storage system has been developed for HVAC. There are many ice-based cooling systems operating around the world. Ice slurry, which is a mixture of fine ice crystals and liquid water, is utilized in ice storage systems owing to its good flowability and large latent heat of fusion. For slurry ice production techniques, there are presently a number of commercially available ice slurry generators (e.g., Supercooled slurry ice generator, Scraper type generator, and Vacuum type generator, etc.). In the present study, a new method was developed to generate ice slurry without the deposition of an ice layer on a cooled surface. The basic components of the experimental apparatus is a cooling brine circulating loop, a high pressure pump, a valve, an aqueous solution flow loop containing the test section, which is made of transparent acrylic, and the associated instrumentation. This new method is based on freezing-point depression of the aqueous solution, which is maintained under high-pressure conditions. To control the timing for solidification and to generate ice slurry, we investigated the relationships among the pressure and temperature of the aqueous solution. The freezing phenomenon of the aqueous solution in the test section was observed in detail. As a result, we developed a new ice slurry generator based on the new method that controls the pressure and temperature of the aqueous solution. Experimental results showed that the characteristics of the ice slurry generation were closely related to the pressure and initial stage temperature of the test fluid. Finally, the optimum operation condition of the ice slurry generator based on visualization experiment was discussed.


1993 ◽  
Vol 334 ◽  
Author(s):  
Ofer Sneh ◽  
Michael L. Wise ◽  
Lynne A. Okada ◽  
Andrew W. Ott ◽  
Steven M. George

AbstractThis study explored the surface chemistry and the promise of the binary reaction scheme:(A) Si-OH+SiCl4 → Si-Cl + HCl(B) Si-Cl + H2O → Si-OH + HClfor controlled SiO2 film deposition. In this binary ABAB… sequence, each surface reaction may be self-terminating and ABAB… repetitive cycles may produce layer-by-layer controlled deposition. Using this approach, the growth of SiO2 thin films on Si(100) with atomic layer control was achieved at 600 K with pressures in the 1 to 50 Torr range. The experiments were performed in a small high pressure cell situated in a UHV chamber. This design couples CVD conditions for film growth with a UHV environment for surface analysis using laser-induced thermal desorption (LITD), temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). The controlled layer-by-layer deposition of SiO2 on Si(100) was demonstrated and optimized using these techniques. A stoichiometric and chlorine-free SiO2 film was also produced as revealed by TPD and AES analysis. SiO2 growth rates of approximately 1 ML of oxygen per AB cycle were obtained at 600 K. These studies demonstrate the methodology of using the combined UHV/high pressure experimental apparatus for optimizing a binary reaction CVD process.


2011 ◽  
Vol 422 ◽  
pp. 10-16
Author(s):  
Fu Hua Wang ◽  
Rui He Wang ◽  
Xue Chao Tan

With the development of deep well drilling technology, a new HTHP (High Temperature High Pressure) experimental apparatus LH-1 was developed to meet the need of research and evaluation of deep well drilling fluid. With the advanced dynamic seal technology, mechanical transmission and data sensing technology, this new apparatus has many kinds of HTHP testing functions in a body and could evaluate manifold performances at the dynamic state of high temperature and high pressure including HTHP dynamic or static filtration test, high temperature dynamic scattering test of drilling cuttings, HTHP dynamic sealing and plugging tests, ultra HTHP aging test and so on. The lab tests show that the new apparatus gains such advantages as novelty of the design, stability of the performance, accuracy and reliability of the experimental data and facility of the operation. Having overcome the defections of the old apparatuses, the new device can provide a new means of experimental researches for the evaluation of HTHP comprehensive performance of deep well drilling fluid.


2014 ◽  
Vol 20 (4) ◽  
pp. 405-418 ◽  
Author(s):  
Linda J. Alakangas ◽  
Frédéric A. Mathurin ◽  
Mikko Faarinen ◽  
Bill Wallin ◽  
Mats E. Åström

1983 ◽  
Vol 23 (02) ◽  
pp. 339-348 ◽  
Author(s):  
T. Ahmed ◽  
D. Menzie ◽  
H. Crichlow

Summary Miscible-displacement processes have generally been recognized by the petroleum industry as an important enhanced oil recovery (EOR) method. Nitrogen flooding has become an attractive method for economical EOR. Since no previous studies have been undertaken to observe miscibility conditions directly during their development in an oil reservoir, a research program was initiated to investigate experimentally the mechanism by which miscibility could be achieved in a reservoir model undergoing high-pressure nitrogen injection. Several experiments were conducted in a low-permeability, consolidated sandpacked stainless-steel tube 125 ft long and 0.435 in. in diameter. The apparatus was designed to allow sampling at selected locations along the core tube enabling researchers to investigate fluid behavior during the process. A more-detailed representation of the nitrogen displacement process is formulated and the graphical chromatographic results are presented to illustrate the nitrogen miscibility in consolidated cores. Introduction Previous researchers have investigated, experimentally and theoretically, the problem of predicting the effects of dry-gas injection into a reservoir. Most earlier experimental studies were concerned primarily with the effects of changing pressure, temperature, and gas solubility on oil recovery during gas injection. Vogel and Yarborough conducted a number of laboratory tests on several different reservoir fluids to determine the effect of nitrogen contact by varying the amounts of nitrogen. They reported that the solution-gas gravity, oil density, and oil viscosity increased with continued contact by nitrogen. No previous studies have been conducted to observe miscibility conditions directly during their development in an oil reservoir. This experimental work was initiated to investigatecompositional changes taking place during displacing of crude oil by continuous high-pressure nitrogen injection,change in properties of the liquid and vapor phases during the nitrogen injection,miscible pressures for nitrogen displacement, anddistance from the injection point at which miscibility would be achieved. Experimental Apparatus and Materials Apparatus The experiment was designed to studyvaporization of oil by high-pressure nitrogen injection,mechanisms of nitrogen multiple contact miscibility displacement, andcompositional changes that take place between nitrogen and in-situ oil during the test. Fig. 1 shows a schematic of the equipment used to perform the experimental study. For the purpose of description, the laboratory apparatus may be divided into three parts: a laboratory oil reservoir model, an injection system, and a production and analytical system. SPEJ P. 339^


Sign in / Sign up

Export Citation Format

Share Document