Atomic Layer Growth of SiO2 on Si(100) Using the Sequential Deposition of SiCl4 and H2O

1993 ◽  
Vol 334 ◽  
Author(s):  
Ofer Sneh ◽  
Michael L. Wise ◽  
Lynne A. Okada ◽  
Andrew W. Ott ◽  
Steven M. George

AbstractThis study explored the surface chemistry and the promise of the binary reaction scheme:(A) Si-OH+SiCl4 → Si-Cl + HCl(B) Si-Cl + H2O → Si-OH + HClfor controlled SiO2 film deposition. In this binary ABAB… sequence, each surface reaction may be self-terminating and ABAB… repetitive cycles may produce layer-by-layer controlled deposition. Using this approach, the growth of SiO2 thin films on Si(100) with atomic layer control was achieved at 600 K with pressures in the 1 to 50 Torr range. The experiments were performed in a small high pressure cell situated in a UHV chamber. This design couples CVD conditions for film growth with a UHV environment for surface analysis using laser-induced thermal desorption (LITD), temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). The controlled layer-by-layer deposition of SiO2 on Si(100) was demonstrated and optimized using these techniques. A stoichiometric and chlorine-free SiO2 film was also produced as revealed by TPD and AES analysis. SiO2 growth rates of approximately 1 ML of oxygen per AB cycle were obtained at 600 K. These studies demonstrate the methodology of using the combined UHV/high pressure experimental apparatus for optimizing a binary reaction CVD process.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 164
Author(s):  
Jau-Shiung Fang ◽  
Yu-Fei Sie ◽  
Yi-Lung Cheng ◽  
Giin-Shan Chen

A layer-by-layer deposition is essential for fabricating the Cu interconnects in a nanoscale-sized microelectronics because the gap-filling capability limits the film deposition step coverage on trenches/vias. Conventional layer-by-layer electrochemical deposition of Cu typically works by using two electrolytes, i.e., a sacrificial Pb electrolyte and a Cu electrolyte. However, the use of a Pb electrolyte is known to cause environmental issues. This study presents an Mn monolayer, which mediated the electrochemical growth of Cu(Mn) film through a sequence of alternating an underpotential deposition (UPD) of Mn, replacing the conventionally used UPD-Pb, with a surface-limited redox replacement (SLRR) of Cu. The use of the sacrificial Mn monolayer uniquely provides redox replacement by Cu2+ owing to the standard reductive potential differences. Repeating the sequence of the UPD-Mn followed by the SLRR-Cu enables Cu(Mn) film growth in an atomic layer growth manner. Further, controlling the time of open circuit potential (OCP) during the Cu-SLRR yields a technique to control the content of the resultant Cu(Mn) film. A longer OCP time caused more replacement of the UPD-Mn by the Cu2+, thus resulting in a Cu(Mn) film with a higher Cu concentration. The proposed layer-by-layer growth method offers a wet, chemistry-based deposition capable of fabricating Cu interconnects without the use of the barrier layer and can be of interest in microelectronics.


1997 ◽  
Vol 11 (31) ◽  
pp. 3647-3655 ◽  
Author(s):  
Alberto Pimpinelli ◽  
Philippe Peyla

Crystal growth by particle deposition on a vicinal surface is studied by kinetic Monte Carlo simulations as a model for molecular beam epitaxy. In particular, the crossover between step flow and layer-by-layer growth during thick film deposition is investigated as a function of the atom deposition rate F, temperature and step-step distance d. The crossover scaling function for the island density is derived analytically by coupling rate equations to the Burton, Cabrera and Frank theory for step flow.


1999 ◽  
Vol 569 ◽  
Author(s):  
Gertjan Koster ◽  
Guus J.H.M. Rijnders ◽  
Dave H.A. Blank ◽  
Horst Rogalla

ABSTRACTThe layered structure of oxides, like the high-T, cuprates, has been topic of research for some years now. The possibility to control thin film deposition on an atomic level has made fabrication of artificial structures and junctions accessible by depositing atomic layers or molecular blocks sequentially. Perfectly smooth substrate surfaces are hereby a prerequisite.Using Pulsed Laser Deposition (PLD), different perovskite oxide materials have been deposited on SrTiO3 substrates. With in situ high pressure Reflection High Energy Electron Diffraction we studied growth at different temperatures and oxygen pressures. Ex situ XRD and AFM have been used to study the morphology after deposition.Here we applied a new approach in obtaining layer-by-layer growth implied by the way of depositing the material, almost regardless of the deposition conditions. By alternating intervals of high supersaturation depositing one unit cell layer with intervals of lower supersaturation, one is able to force a layer-by-layer growth mode, which is in principle only feasible with PLD. We applied this technique to fabricate the layered infinite structure (Ba,Sr,Ca)CuO2 with artificial layered modulation, which have been characterized by XRD and AFM.


1995 ◽  
Vol 387 ◽  
Author(s):  
J. L. Hoyt ◽  
P. Kuo ◽  
K. Rim ◽  
J. J. Welser ◽  
R. M. Emerson ◽  
...  

AbstractMaterial and device challenges for Rapid Thermal Processing (RTP) of heterostructures are discussed, focusing on RTP-based epitaxy in the Si/Si1−xGex system. While RTP-based heteroepitaxy offers enhanced processing flexibility, it also poses significant challenges for temperature measurement and control. Several examples of Si/Si1−xGex device structures are discussed from the point of view of the sensitivity of device parameters to variations in layer thickness and composition. The measured growth kinetics for Si and Si1−xGex are then used to estimate growth temperature tolerances for these structures. Demanding applications are expected to require temperature control and uniformity to within 0.5°C.Future research challenges include the fabrication of structures with monolayer thickness control using self-limited growth techniques. Atomic layer epitaxy (ALE) is a well-known example of such a growth technique. In ALE, the wafer is cyclically exposed to different reactants, to achieve layer-by-layer growth. An RTP-based atomic layer epitaxy process, and its application to the growth of CdTe films, is briefly discussed. The extension to Column IV alloys follows readily. The RTP-based process enables self-limited growth for precursor combinations for which isothermal ALE is not feasible.


1993 ◽  
Vol 32 (Part 2, No. 2B) ◽  
pp. L236-L238 ◽  
Author(s):  
Kuninori Kitahara ◽  
Nobuyuki Ohtsuka ◽  
Toshihiko Ashino ◽  
Masashi Ozeki ◽  
Kazuo Nakajima

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 291
Author(s):  
Alberto Perrotta ◽  
Julian Pilz ◽  
Roland Resel ◽  
Oliver Werzer ◽  
Anna Maria Coclite

Direct plasma enhanced-atomic layer deposition (PE-ALD) is adopted for the growth of ZnO on c-Si with native oxide at room temperature. The initial stages of growth both in terms of thickness evolution and crystallization onset are followed ex-situ by a combination of spectroscopic ellipsometry and X-ray based techniques (diffraction, reflectivity, and fluorescence). Differently from the growth mode usually reported for thermal ALD ZnO (i.e., substrate-inhibited island growth), the effect of plasma surface activation resulted in a substrate-enhanced island growth. A transient region of accelerated island formation was found within the first 2 nm of deposition, resulting in the growth of amorphous ZnO as witnessed with grazing incidence X-ray diffraction. After the islands coalesced and a continuous layer formed, the first crystallites were found to grow, starting the layer-by-layer growth mode. High-temperature ALD ZnO layers were also investigated in terms of crystallization onset, showing that layers are amorphous up to a thickness of 3 nm, irrespective of the deposition temperature and growth orientation.


1991 ◽  
Vol 222 ◽  
Author(s):  
Masaki Kanai ◽  
Tomoji Kawai ◽  
Takuya Matsumoto ◽  
Shichio Kawai

ABSTRACTThin films of (Ca,Sr)CuO2 and Bi2Sr2Can-1CunO2n+4 are formed by laser molecular beam epitaxy with in-situ reflection high energy electron diffraction observation. The diffraction pattern shows that these materials are formed with layer-by-layer growth. The change of the diffraction intensity as well as the analysis of the total diffraction pattern makes It possible to control the grown of the atomic layer or the unit-cell layer.


1996 ◽  
Vol 423 ◽  
Author(s):  
Weida Gian ◽  
Marek Skowronski ◽  
Greg S. Rohrer

AbstractMicrostructure and extended defects in α-GaN films grown by organometallic vapor phase epitaxy on sapphire substrates using low temperature AIN (or GaN) buffer layers have been studied using transmission electron microscopy. The types and distribution of extended defects were correlated with the film growth mode and the layer nucleation mechanism which was characterized by scanning force microscopy. The nature of the extended defects was directly related to the initial three-dimensional growth. It was found that inhomogeneous nucleation leads to a grain-like structure in the buffer; the GaN films then have a columnar structure with a high density of straight edge dislocations at grain boundaries which are less likely to be suppressed by common annihilation mechanisms. Layer-by-layer growth proceeds in many individual islands which is evidenced by the observation of hexagonal growth hillocks. Each growth hillock has an open-core screw dislocation at its center which emits monolayer-height spiral steps.


1993 ◽  
Vol 324 ◽  
Author(s):  
N. Dietz ◽  
D.J. Stephens ◽  
G. Lucovsky ◽  
K.J. Bachmann

AbstractBrewster Angle Reflectance Differential Spectroscopy (BARDS) has been proposed as an optical method for real-time characterization of the growth of thin films. BARDS is based on changes in the reflectivity, Rp, of parallel (p)-polarized light incident at, or near, the Brewster angle of the substrate material. Changes in R are sufficiently large to monitor layer growth, and to determine the thickness and the optical constants of the deposited film. In this paper we extend the method to multilayer film deposition. The derivative properties of R are correlated with differences in the optical constants of the two materials, and with the sharpness of their interface. We present spectra for SiO2/Si3N4/SiO2/Si, demonstrating some of these aspects of this new and effective approach to in-situ monitoring.


Sign in / Sign up

Export Citation Format

Share Document