scholarly journals Optimal Position Management for a Market Maker with Stochastic Price Impacts

Author(s):  
Masaaki Fujii
2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


2020 ◽  
Vol 4 (2-3) ◽  
pp. 170-184
Author(s):  
Suvi Nenonen ◽  
Kaj Storbacka

In reconnecting marketing to more plastic and malleable markets, we need more understanding about market evolution. In this research we explore how to assess the state of a market, and how the roles of a market-shaping actor vary depending on this state. We view markets as configurations of 25 interdependent elements and argue that well-functioning markets have a high degree of configurational fit between elements. The level of configurational fit describes the state of a market as a continuum from low to high marketness. The clout of a market actor to influence a market configuration is an amalgamation of the actor’s capabilities, network position and relative power. By exploring marketness and clout as contextual contingencies, we identify four market-shaping roles: market maker, market activist, market champion, and market complementor. The focus of a market-shaping actor, in terms of which elements to influence and in which order, vary significantly between roles.


2011 ◽  
Author(s):  
Verlis Morris ◽  
Dwon Serinash ◽  
Adrian Thaxter ◽  
Darron Anthony Thomas
Keyword(s):  

Soft Matter ◽  
2021 ◽  
Author(s):  
Siddhansh Agarwal ◽  
Sascha Hilgenfeldt

The energetically optimal position of lattice defects on intrinsically curved surfaces is a complex function of shape parameters. For open surfaces, a simple condition predicts the critical size for which...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Víctor Faundes ◽  
Martin D. Jennings ◽  
Siobhan Crilly ◽  
Sarah Legraie ◽  
Sarah E. Withers ◽  
...  

AbstractThe structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 461
Author(s):  
Weixiang Ni ◽  
Jian Zhang ◽  
Sheng Chen

In the long-distance and high-drop gravitational water supply systems, the water level difference between the upstream and downstream is large. Thus, it is necessary to ensure energy dissipation and pressure head reduction to reduce the pipeline pressure head. The energy dissipation box is a new type of energy dissipation and pressure head reduction device, which is widely used in the gravitational flow transition systems. At present, there is still a dearth of systematic knowledge about the performance of energy dissipation boxes. In this paper, a relationship between the location of the energy dissipation box and the pressure head amplitude is established, a theoretical optimal location equation of the energy dissipation box is derived, and numerical simulations using an engineering example are carried out for verification. The protective effects of an energy dissipation box placed at the theoretical optimal location and an upstream location are compared. The results indicate that for the same valve action time, the optimal position allows effectively reducing the total volume of energy dissipation box. The oscillation amplitudes of the water level in the box and the pressure head behind the box are markedly reduced. Under the condition that the water level oscillation of the energy dissipation box is almost the same, the optimal location offers better pressure head reduction protection performance than the upstream location.


Sign in / Sign up

Export Citation Format

Share Document