scholarly journals Fecal Microbiota As a Non-Invasive Biomarker to Predict the Tissue Iron Accumulation in Intestine Epithelial Cells and Liver

2019 ◽  
Author(s):  
Bingdong Liu ◽  
Xiaohan Pan ◽  
Zhihong Liu ◽  
Shujie Chen ◽  
Mulan Han ◽  
...  
2020 ◽  
Vol 34 (2) ◽  
pp. 3006-3020 ◽  
Author(s):  
Bingdong Liu ◽  
Xiaohan Pan ◽  
Zhihong Liu ◽  
Mulan Han ◽  
Guohuan Xu ◽  
...  

2019 ◽  
Author(s):  
Bingdong Liu ◽  
Xiaohan Pan ◽  
Liheng Yao ◽  
Shujie Chen ◽  
Zhihong Liu ◽  
...  

AbstractIron is an essential trace mineral for the growth, systemic metabolism, and immune response. Imbalance of tissue iron absorption and storage leads to various diseases. The excessive iron accumulation is associated with inflammation and cancer while iron deficiency leads to growth retardation. Studies investigated in Kenyan infants and school children suggests that both low and high iron intake result in dysbiosis of gut microbiota. This would lead to the disruption of microbial diversity, an increase of pathogen abundance and the induction of intestinal inflammation. Despite this progress, in-depth studies investigating the relationship between iron availability and gut microbiota is not completely explored. In the current study, we established a murine model to study the connection between iron and microbiota by feeding mice with either iron-deprived or -fortified diet. To identify key microbiota related to iron levels, we combined the 16S rRNA amplicon sequencing with the innovated bioinformatic algorithms, such as RDA, co-occurrence, and machine learning to identify key microbiota. Manipulation of iron levels in the diet leads to systemic iron dysregulation and dysbiosis of gut microbiota. The bioinformatic algorithms used here detect five key bacteria that correlate with systemic iron levels. Leveraging on these key microbiotas, we also established a prediction model which could precisely distinguish the individual under either iron-deprived or iron-fortified physiological condition to further prove the link between microbiota and systemic iron homeostasis. This innovated and non-invasive approach could be potentially used for the early diagnosis and therapy of iron-dysregulation related diseases, e.g. anemia, inflammatory disease, fibrosis, and cancers.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1885 ◽  
Author(s):  
Palsa Kondaiah ◽  
Puneeta Singh Yaduvanshi ◽  
Paul A Sharp ◽  
Raghu Pullakhandam

Iron and zinc are essential micronutrients required for growth and health. Deficiencies of these nutrients are highly prevalent among populations, but can be alleviated by supplementation and food fortification. Cross-sectional studies in humans showed positive association of serum zinc levels with hemoglobin and markers of iron status. Dietary restriction of zinc or intestinal specific conditional knock out of ZIP4 (SLC39A4), an intestinal zinc transporter, in experimental animals demonstrated iron deficiency anemia and tissue iron accumulation. Similarly, increased iron accumulation has been observed in cultured cells exposed to zinc deficient media. These results together suggest a potential role of zinc in modulating intestinal iron absorption and mobilization from tissues. Studies in intestinal cell culture models demonstrate that zinc induces iron uptake and transcellular transport via induction of divalent metal iron transporter-1 (DMT1) and ferroportin (FPN1) expression, respectively. It is interesting to note that intestinal cells are exposed to very high levels of zinc through pancreatic secretions, which is a major route of zinc excretion from the body. Therefore, zinc appears to be modulating the iron metabolism possibly via regulating the DMT1 and FPN1 levels. Herein we critically reviewed the available evidence to hypothesize novel mechanism of Zinc-DMT1/FPN1 axis in regulating intestinal iron absorption and tissue iron accumulation to facilitate future research aimed at understanding the yet elusive mechanisms of iron and zinc interactions.


1992 ◽  
Vol 52 (3) ◽  
pp. 347-350 ◽  
Author(s):  
George P. Albaugh ◽  
Vasantha Iyengar ◽  
Althaf Lohani ◽  
Mehran Malayeri ◽  
Shukal Bala ◽  
...  

2019 ◽  
Vol 317 (2) ◽  
pp. F512-F517 ◽  
Author(s):  
Kapil Chaudhary ◽  
Aruna Chilakala ◽  
Sudha Ananth ◽  
Ashok Mandala ◽  
Rajalakshmi Veeranan-Karmegam ◽  
...  

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes. Possible maladaptive mechanisms of organ damage by tissue iron accumulation have not been well studied. We recently reported that iron induced the retinal renin-angiotensin system (RAS) and accelerated the progression of diabetic retinopathy. However, whether iron regulates the systemic RAS is unknown. To explore if iron alters the expression of intrarenal RAS and its role in the progression of DN, we used the high Fe iron (HFE) knockout mouse, a genetic model of systemic iron overload. We found that diabetes upregulated the expression of iron regulatory proteins and augmented tissue iron accumulation in the kidneys of both type 1 and type 2 diabetic mouse models. Iron accumulation in the kidneys of HFE knockout mice was associated with increase in serum and intrarenal renin expression. Induction of diabetes in HFE knockout mice using streptozotocin caused a much higher accumulation of renal iron and accelerated the progression of nephropathy compared with diabetic wild-type mice. Treatment of diabetic mice with the iron chelator deferiprone reversed the renin upregulation and reduced kidney injury. Thus, our results establish a new link between renal iron and RAS activity. Exploring the mechanisms of iron-induced RAS activation further may have a significant therapeutic impact on hypertension and DN.


2016 ◽  
Vol 34 (4) ◽  
pp. 364-373 ◽  
Author(s):  
Heinz Zoller ◽  
Benjamin Henninger

Hemochromatosis is a common cause of chronic liver disease and HFE genotyping allows decisive and non-invasive diagnosis. Molecular and clinical genetic studies have led to the identification of genes other than HFE in patients with inherited diseases associated with increased hepatic iron storage that can cause hemochromatosis, which adds complexity to a diagnostic approach to patients with suspected hemochromatosis. Despite major advances in genetics, hepatic iron quantification by non-invasive methods therefore remains the key to the diagnosis of hemochromatosis. Although associated with homozygosity for the C282Y polymorphism in the HFE gene in >80% of patients, hemochromatosis is a complex genetic disease with strong environmental disease modifiers. Testing for mutations in the non-HFE hemochromatosis genes transferrin receptor 2, hemojuvelin, HAMP and SLC40A1 is complex, costly and time-consuming. Demonstration of hepatic iron overload by liver biopsy or MRI is therefore required before such complex tests are carried out. The pathogenesis of chronic liver disease in hemochromatosis is mainly attributed to the redox potential of tissue iron, and only the more recent studies have focused on the toxic properties of circulating iron. Considering the fact that an increased saturation of transferrin and high iron in plasma are the hallmark of all hemochromatosis forms, an alternative view would be that toxic iron in the circulation is involved in the pathogenesis of hemochromatosis. Recent studies have shown an increased concentration of redox-active iron in plasma in patients with increased transferrin saturation. This finding supports the hypothesis that tissue iron may be the ‘smoking gun' of iron-induced organ damage. Taken together, caring for patients with suspected or established hemochromatosis still remains a challenge, where understanding the genetics, biochemistry and cell biology of hemochromatosis will aid better diagnosis and treatment of affected individuals.


Sign in / Sign up

Export Citation Format

Share Document