Barriers to Artificial Intelligence Adoption in Healthcare Management: A Systematic Review

2019 ◽  
Author(s):  
Mir Mohammed Assadullah
Author(s):  
Rebeca Antolín-Prieto ◽  
Nuria Ruiz-Lacaci ◽  
Ana Reyes-Menendez

This study aimed to identify quantitative and qualitative KPIs for the implementation of apps and use of digital data in healthcare management. To this end, a systematic review of the literature was undertaken to analyze relevant scientific articles downloaded from reputed scientific databases (Scopus, PubMed, PsyINFO, ScienceDirect, and WOS). The databases were searched using the following keywords: “Big Data,” “Artificial Intelligence,” “Mobile Technologies,” “APP,” “Disease,” “Geolocation,” and “Health.” Subsequently, 25 qualitative and quantitative KPI values, as rating, product quality, or unique users, were identified for the successful preparation and management of healthcare based on apps and the use of digital data.


2021 ◽  
Vol 11 (7) ◽  
pp. 3253
Author(s):  
Umile Giuseppe Longo ◽  
Sergio De Salvatore ◽  
Vincenzo Candela ◽  
Giuliano Zollo ◽  
Giovanni Calabrese ◽  
...  

Background: The application of virtual and augmented reality technologies to orthopaedic surgery training and practice aims to increase the safety and accuracy of procedures and reducing complications and costs. The purpose of this systematic review is to summarise the present literature on this topic while providing a detailed analysis of current flaws and benefits. Methods: A comprehensive search on the PubMed, Cochrane, CINAHL, and Embase database was conducted from inception to February 2021. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies (MINORS) was used to assess the quality and potential bias of the included randomized and non-randomized control trials, respectively. Results: Virtual reality has been proven revolutionary for both resident training and preoperative planning. Thanks to augmented reality, orthopaedic surgeons could carry out procedures faster and more accurately, improving overall safety. Artificial intelligence (AI) is a promising technology with limitless potential, but, nowadays, its use in orthopaedic surgery is limited to preoperative diagnosis. Conclusions: Extended reality technologies have the potential to reform orthopaedic training and practice, providing an opportunity for unidirectional growth towards a patient-centred approach.


Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e043665
Author(s):  
Srinivasa Rao Kundeti ◽  
Manikanda Krishnan Vaidyanathan ◽  
Bharath Shivashankar ◽  
Sankar Prasad Gorthi

IntroductionThe use of artificial intelligence (AI) to support the diagnosis of acute ischaemic stroke (AIS) could improve patient outcomes and facilitate accurate tissue and vessel assessment. However, the evidence in published AI studies is inadequate and difficult to interpret which reduces the accountability of the diagnostic results in clinical settings. This study protocol describes a rigorous systematic review of the accuracy of AI in the diagnosis of AIS and detection of large-vessel occlusions (LVOs).Methods and analysisWe will perform a systematic review and meta-analysis of the performance of AI models for diagnosing AIS and detecting LVOs. We will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols guidelines. Literature searches will be conducted in eight databases. For data screening and extraction, two reviewers will use a modified Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist. We will assess the included studies using the Quality Assessment of Diagnostic Accuracy Studies guidelines. We will conduct a meta-analysis if sufficient data are available. We will use hierarchical summary receiver operating characteristic curves to estimate the summary operating points, including the pooled sensitivity and specificity, with 95% CIs, if pooling is appropriate. Furthermore, if sufficient data are available, we will use Grading of Recommendations, Assessment, Development and Evaluations profiler software to summarise the main findings of the systematic review, as a summary of results.Ethics and disseminationThere are no ethical considerations associated with this study protocol, as the systematic review focuses on the examination of secondary data. The systematic review results will be used to report on the accuracy, completeness and standard procedures of the included studies. We will disseminate our findings by publishing our analysis in a peer-reviewed journal and, if required, we will communicate with the stakeholders of the studies and bibliographic databases.PROSPERO registration numberCRD42020179652.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


Sign in / Sign up

Export Citation Format

Share Document