3D Printing of Recyclable Elastomers with Controllable Degradation and Adhesive Properties

2021 ◽  
Author(s):  
Sofia Bisso ◽  
Caroline Weber ◽  
Valentine Berger ◽  
Nevena Paunović ◽  
Yinyin Bao ◽  
...  
2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


2021 ◽  
Vol 1037 ◽  
pp. 26-31
Author(s):  
Ekaterina Potapova ◽  
Tatiana Guseva ◽  
Kirill Shchelchkov ◽  
Hans Bertram Fischer

3D construction printer - is an innovative construction approach with which building elements can be constructed without the use of formwork and you to get products of various complex shapes with minimal time and material costs. Binder 3D printing technology results in a cheap and high-speed construction method that allows greater freedom in both architectural and structural design of concrete. The principle of operation of a 3D printer is based on the principle of gradual (layer-by-layer) creation of a solid model, which is, as it were, "grown" from a certain binding material. The working mixture must have thixotropic and adhesive properties, it must be workable by the printer and at the same time not spread under the influence of subsequent layers. Therefore, it is important to select the composition of the composition of the working mixture. This paper presents the results of a study on the development of the composition of a working mixture based on a gypsum-cement-pozzolanic binder. The developed composition of the gypsum-cement-pozzolanic binder with a complex of modifying additives is characterized by low spreadability, high viscosity and is easy to lay.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1765
Author(s):  
Fan Liu ◽  
Xiaohong Wang

Three-dimensional (3D) printing, known as the most promising approach for bioartificial organ manufacturing, has provided unprecedented versatility in delivering multi-functional cells along with other biomaterials with precise control of their locations in space. The constantly emerging 3D printing technologies are the integration results of biomaterials with other related techniques in biology, chemistry, physics, mechanics and medicine. Synthetic polymers have played a key role in supporting cellular and biomolecular (or bioactive agent) activities before, during and after the 3D printing processes. In particular, biodegradable synthetic polymers are preferable candidates for bioartificial organ manufacturing with excellent mechanical properties, tunable chemical structures, non-toxic degradation products and controllable degradation rates. In this review, we aim to cover the recent progress of synthetic polymers in organ 3D printing fields. It is structured as introducing the main approaches of 3D printing technologies, the important properties of 3D printable synthetic polymers, the successful models of bioartificial organ printing and the perspectives of synthetic polymers in vascularized and innervated organ 3D printing areas.


Nature ◽  
2013 ◽  
Vol 494 (7436) ◽  
pp. 174-174 ◽  
Author(s):  
Michael Pawlyn
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 594-595
Author(s):  
Cameron Darkes-Burkey ◽  
Robert F. Shepherd
Keyword(s):  

Author(s):  
Thomas Birtchnell ◽  
William Hoyle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document