Injectable Self-Healable Nanocomposite Hydrogels with Mussel-Inspired Adhesive Properties for 3D Printing Ink

2019 ◽  
Vol 2 (8) ◽  
pp. 5000-5008 ◽  
Author(s):  
Weiwei Huang ◽  
Chenze Qi ◽  
Yong Gao
2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yangwei Wang ◽  
Peilun Lv ◽  
Jian Li ◽  
Liying Yu ◽  
Guodong Yuan ◽  
...  

Purpose This paper aims to propose a suitable atomizing solidification chitosan (CS) gel liquid extrusion molding technology for the three dimensional (3D) printing method, and experiments verify the feasibility of this method. Design/methodology/approach This paper mainly uses experimental means, combined with theoretical research. The preparation method, solidification forming method and 3D printing method of CS gel solution were studied. The CS gel printing mechanism and printing error sources are analyzed on the basis of the CS gel ink printing results, printing performance with different ratios of components by constructing a gel print prototype, experiments evaluating the CS gel printing technology and the effects of the process parameters on the scaffold formation. Findings CS printing ink was prepared; the optimal formula was found; the 3 D printing experiment of CS was completed; the optimal printing parameters were obtained; and the reliability of the forming prototype, printing ink and gel printing process was verified, which allowed for the possibility to apply the 3 D printing technology to the manufacturing of a CS gel structure. Originality/value This study can provide theoretical and technical support for the potential application of CS 3 D printed gels in tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4130
Author(s):  
Svetlana A. Glukhova ◽  
Vyacheslav S. Molchanov ◽  
Boris V. Lokshin ◽  
Andrei V. Rogachev ◽  
Alexey A. Tsarenko ◽  
...  

Rapidly growing 3D printing of hydrogels requires network materials which combine enhanced mechanical properties and printability. One of the most promising approaches to strengthen the hydrogels consists of the incorporation of inorganic fillers. In this paper, the rheological properties important for 3D printability were studied for nanocomposite hydrogels based on a rigid network of percolating halloysite nanotubes embedded in a soft alginate network cross-linked by calcium ions. Particular attention was paid to the effect of polymer cross-linking on these properties. It was revealed that the system possessed a pronounced shear-thinning behavior accompanied by a viscosity drop of 4–5 orders of magnitude. The polymer cross-links enhanced the shear-thinning properties and accelerated the viscosity recovery at rest so that the system could regain 96% of viscosity in only 18 s. Increasing the cross-linking of the soft network also enhanced the storage modulus of the nanocomposite system by up to 2 kPa. Through SAXS data, it was shown that at cross-linking, the junction zones consisting of fragments of two laterally aligned polymer chains were formed, which should have provided additional strength to the hydrogel. At the same time, the cross-linking of the soft network only slightly affected the yield stress, which seemed to be mainly determined by the rigid percolation network of nanotubes and reached 327 Pa. These properties make the alginate/halloysite hydrogels very promising for 3D printing, in particular, for biomedical purposes taking into account the natural origin, low toxicity, and good biocompatibility of both components.


2018 ◽  
Vol 130 (9) ◽  
pp. 2377-2380 ◽  
Author(s):  
Jieping Wang ◽  
Annalisa Chiappone ◽  
Ignazio Roppolo ◽  
Feng Shao ◽  
Erika Fantino ◽  
...  

2021 ◽  
Author(s):  
Sofia Bisso ◽  
Caroline Weber ◽  
Valentine Berger ◽  
Nevena Paunović ◽  
Yinyin Bao ◽  
...  

2021 ◽  
Vol 1043 ◽  
pp. 141-148
Author(s):  
Aleksey Adamtsevich ◽  
Andrey Pustovgar ◽  
Liubov Adamtsevich

3D Concrete Printing (3DCP) technology, compared to traditional monolithic construction, gives a possibility to increase the workspeed and reduce the manual laborproportion, reduce material consumption and also improve the architectural appearance of buildings being erected. At the same time, more stringent requirements are imposed on the material for 3D printing in terms of rheological characteristicscontrol, strength developmentkinetics, interplay adhesion and some other parameters than for conventional ready-mixed concrete. Therefore, to ensure the mass application of technologies for additive construction production using concrete as printing ink, it is necessary to develop a regulatory and technical base, including the development of standard test methods to determine the operational properties of this typeofmaterials. The article examines the main trends in the management of the materials’properties for construction 3D printing based on cement binders and describes the principles of building a system for standardizing materials for 3D printing construction in Russia, which was developed with the participation of the authors of this article.


Author(s):  
Malo Charrier ◽  
Claudiane Ouellet-Plamondon

Three-dimensional (3D) printing has been used in various fields to tackle applications difficult for conventional manufacturing. To realize the full potential of this technology in the transportation sector, it is imperative to identify suitable tests and mixtures for printing “inks” made of mortar. In this study, several conventional and non-conventional tests on mortars and cement pastes were conducted. This work highlights the correlation between the results of slump test and the deformation test that indicates the comportment of the mixture under a stack of printed layers. Moreover, a strong connection between yield stress and mini-slump is observed, demonstrating a simplification of the testing procedure, and a link between the mortar and the cement paste is developed. In the printing ink design phase, this association enables the prediction of flowability. The yield stress and the final radius of the mini-slump tests were very well correlated for the admixture tested. The use of the mini-slump test simplifies the testing procedure and allows for quicker formulations of admixtures in the printing ink.


Author(s):  
Hyeongjin Lee ◽  
YoungWon Koo ◽  
Miji Yeo ◽  
SuHon Kim ◽  
Geun Hyung Kim

 Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures of human tissues and organs. Now it is being applied to 3D cell printing, which can position cells and biomaterials, such as growth factors, at desired positions in the 3D space. However, there are some challenges of 3D cell printing, such as cell damage during the printing process and the inability to produce a porous 3D shape owing to the embedding of cells in the hydrogel-based printing ink, which should be biocompatible, biodegradable, and non-toxic, etc. Therefore, researchers have been studying ways to balance or enhance the post-print cell viability and the print-ability of 3D cell printing technologies by accommodating several mechanical, electrical, and chemical based systems. In this mini-review, several common 3D cell printing methods and their modified applications are introduced for overcoming deficiencies of the cell printing process.


Langmuir ◽  
2013 ◽  
Vol 29 (23) ◽  
pp. 7087-7095 ◽  
Author(s):  
Mian Wang ◽  
Du Yuan ◽  
Xiaoshan Fan ◽  
Nanda Gopal Sahoo ◽  
Chaobin He

Sign in / Sign up

Export Citation Format

Share Document