Correlation of Bacterial Community with Phosphorus (P) Fraction Drives Discovery of Actinobacteria Involved Soil P Transformation During Trichlorfon Degradation

2021 ◽  
Author(s):  
Peiying Wang ◽  
Qiqiang Li ◽  
Fei Ge ◽  
Feng Li ◽  
Yun Liu ◽  
...  

SOIL ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Mohsen Morshedizad ◽  
Kerstin Panten ◽  
Wantana Klysubun ◽  
Peter Leinweber

Abstract. The acceptability of novel bone char fertilizers depends on their P release, but reactions at bone char surfaces and impacts on soil P speciation are insufficiently known. By using sequential fractionation and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy we investigated whether and how the chemical composition of bone char particles has been altered in soil and has consequently affected the P speciation of amended soils. Therefore, two different kinds of bone char particles (BC produced by the pyrolysis of degreased animal bone chips at 800 °C and BCplus, a BC enriched with reduced sulfur compounds) were manually separated from the soil at the end of two different experiments: incubation leaching and ryegrass cultivation. Sequential P fractionation of amended soils showed P enrichment in all fractions compared to the control. The most P increase between all treatments significantly occurred in the NaOH–P and resin-P fractions in response to BCplus application in both incubation-leaching and ryegrass cultivation experiments. This increase in the readily available P fraction in BCplus-treated soils was confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BC particles and amended soils. The proportion of Ca hydroxyapatite decreased, whereas the proportion of CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. These results indicate that soil amendment with BCplus particles leads to elevated P concentration and maintains more soluble P species than BC particles even after 230 days of ryegrass cultivation.





2007 ◽  
Vol 23 (6) ◽  
pp. 693-704 ◽  
Author(s):  
Travis Idol ◽  
Patrick J. Baker ◽  
Dean Meason

Precipitation and temperature are known to have important effects on forest productivity, but these effects may be strongly mediated through their influence on soil and leaf nutrients. We measured indicators of forest productivity and soil and leaf nutrients across independent gradients of precipitation and elevation/temperature in lower montane Hawaiian forests dominated by a single overstorey species, Acacia koa, situated on 1500–3000-y-old soils that were mixtures of volcanic ash and basalt. Stand basal area was highest at the wettest site, 2000 mm mean annual precipitation (MAP), and leaf N and P were lowest at the driest site, 1000 mm MAP. Soil N availability and leaf N concentration declined across an 850-m elevation gradient, but this was not correlated with stand basal area or soil organic matter content. Across all stands, basal area was negatively correlated with the exchangeable soil P fraction. As well, the soil C:N ratio was negatively correlated with both soil P availability and the size of the primary mineral P fraction. Soil P availability and weathering appear to be important determinants of soil organic matter quantity and quality. Overall, precipitation is the major driving force for forest productivity, but P weathering and availability play important roles in limiting productivity in wetter sites and in controlling soil organic matter dynamics in these N-fixing forests.



2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ricardo de Oliveira Munhoz ◽  
Ronaldo Severiano Berton ◽  
Otávio Antonio de Camargo

Land application of biosolids (SS) can cause a buildup of phosphorus (P) in the top soil. The changes in the soil P characteristics may be assessed by the sorption isotherm and the sequential fractionation techniques. Samples of Haplorthox were collected from a field experiment where maize was cultivated for two years, after two applications of SS originated from two cities of São Paulo State, Brazil. SS applications added a total of 125, 250, 500, 1000 and 2000 kg ha−1of P in the area. To perform the sorption isotherms and obtain P maximum sorption capacity (Qmax) and the binding energy, soil samples were submitted to increasing P concentration solutions until equilibrium was reached. Sequential fractionation was done by a sequential extraction with CaCl2, NaHCO3, NaOH, HCl, and HNO3+ HClO4(residual). Addition of biosolids from both cities to the soil decreasedQmaxand the binding energy obtained by the Langmuir equation. SS additions changed the P fractions distribution in the soil by increasing the labile fractions (P-CaCl2and P-NaHCO3) and the moderately labile fraction (P-NaOH) by 11.2% and 20.3%, respectively, in detriment of the most resistant P fraction.



PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6147 ◽  
Author(s):  
Shu-Hong Wu ◽  
Bing-Hong Huang ◽  
Jian Gao ◽  
Siqi Wang ◽  
Pei-Chun Liao

Grassland afforestation dramatically affects the abiotic, biotic, and ecological function properties of the original ecosystems. Interference from afforestation might disrupt the stasis of soil physicochemical properties and the dynamic balance of microbiota. Some studies have suggested low sensitivity of soil properties and bacterial community to afforestation, but the apparent lack of a significant relationship is probably due to the confounding effects of the generalist habitat and rare bacterial communities. In this study, soil chemical and prokaryotic properties in a 30-year-old Mongolia pine (Pinus sylvestris var. mongolica Litv.) afforested region and adjacent grassland in Inner Mongolia were classified and quantified. Our results indicate that the high richness of rare microbes accounts for the alpha-diversity of the soil microbiome. Few OTUs of generalist (core bacteria) and habitat-specialist bacteria are present. However, the high abundance of this small number of OTUs governs the beta-diversity of the grassland and afforested land bacterial communities. Afforestation has changed the soil chemical properties, thus indirectly affecting the soil bacterial composition rather than richness. The contents of soil P, Ca2+, and Fe3+ account for differentially abundant OTUs such as Planctomycetes and subsequent changes in the ecologically functional potential of soil bacterial communities due to grassland afforestation. We conclude that grassland afforestation has changed the chemical properties and composition of the soil and ecological functions of the soil bacterial community and that these effects of afforestation on the microbiome have been modulated by changes in soil chemical properties.



Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1001
Author(s):  
Scott X. Chang ◽  
Mihiri C.W. Manimel Wadu ◽  
Fengxiang Ma

Shelterbelt systems play pivotal roles in providing goods and services to the rural community and the society at large, but phosphorus (P) cycling in shelterbelt systems is poorly studied, while P cycling and availability would be linked to the ecological function and services of shelterbelt systems. This study was conducted to understand how long-term (>30 years) land-use between cropland and forestland in shelterbelt systems affect soil P status. We investigated modified Kelowna (PKelowna) and Mehlich-3 (PMehlich) extractable P, P fractions (by sequential chemical fractionation), P sorption properties in the 0–10 and 10–30 cm soils and their relationship in six pairs of the cropland areas and adjacent forestland (each pair constitutes a shelterbelt system) in central Alberta. Both PKelowna and PMehlich in the 0–10 cm soil were greater in the cropland than in the forestland. The PKelowna ranged from 10 to 170 and 2 to 57 mg kg−1 within the cropland areas and forestland, respectively. The inorganic P fraction in the 0–30 cm depth was significantly related to PKelowna (R2 = 0.55) and PMehlich (R2 = 0.80) in cropland, but organic P fraction was not significantly related with neither PKelowna nor PMehlich. The iron (Fe) and aluminum (Al) associated P (Fe/Al-P) explained ~50% and ~45% of the variation of PKelowna in the 0–30 cm soil in the cropland and forestland, respectively. The Fe/Al-P and organic P fractions in the 0–10 cm soil were greater in the cropland than in the forestland. The differences in availability and P forms depending on the land use type in shelterbelts suggest that P management needs to be land-use type-specific for shelterbelt systems.



RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 27009-27017 ◽  
Author(s):  
Junjie Du ◽  
Xiangang Hu ◽  
Qixing Zhou

Graphene oxide regulates the bacterial community and exhibits property changes in soil.



2005 ◽  
Vol 85 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Lotfi Khiari ◽  
Léon E. Parent

Organic matter can sorb P in acid soils through metal-organic matter-phosphate complexes. The pyrophosphate extractable Al and Fe and soil C contents were hypothetized to influence P partitioning in Ferro-Humic Podzols. Reaction of added P may be mitigated by adding lime or organic matter as dry swine manure (DSM) together with mineral P fertilizers. Three soils had 40 to 50 g kg-1 of soil organic matter (SOM) content, and 76 to 140 mmol (Al + Fe)pyro kg-1. A peaty soil phase had 200 g SOM kg-1, and 58 mmol (Al + Fe)pyro kg-1. Rates of monoammonium phosphate were 0, 27, 69, and 144 kg P ha-1 in a simulated fertilizer band. Rates of DSM and lime were 800 and 185–369 mg per 35 mL of soil, respectively. After 6 wk of incubation, soil P was fractionated sequentially into aluminium bound P (Al-P), iron bound P (Fe-P), and loosely bound P. Total P, desorbed P and organic P were determined in separate subsamples. A proportion of 79–92% of added P was recovered as Al-P and Fe-P in the three low SOM soils, compared to 51–61% in the high SOM soil. The DSM increased loosely bound P from 25 to 34% in the high SOM soil and from 4.8 to 5.9% in low SOM soils. With DSM, the proportion of desorbed P was much higher in the high (70%) than in low SOM (22%) soils. Compared to the non-amended treatment, lime showed no significant effect on any P fraction but desorbed P. The DSM increased P availability in the fertilizer band considerably more in the soil having the lowest (Al + Fe)pyro/C ratio. Key words: P fractionation, organic ligand, P sorption, fertilizer band





Author(s):  
Li Li ◽  
Tingliang Li ◽  
Huisheng Meng ◽  
Yinghe Xie ◽  
Jie Zhang ◽  
...  

The restoration of soil fertility and microbial communities is the key to the soil reclamation and ecological reconstruction in coal mine subsidence areas. However, the response of soil bacterial communities to reclamation is still not well understood. Here, we studied the bacterial communities in fertilizer-reclaimed soil (CK, without fertilizer; CF, chemical fertilizer; M, manure) in the Lu’an reclamation mining region and compared them with those in adjacent subsidence soil (SU) and farmland soil (FA). We found that the compositions of dominant phyla in the reclaimed soil differed greatly from those in the subsidence soil and farmland soil (p < 0.05). The related sequences of Acidobacteria, Chloroflexi, and Nitrospirae were mainly from the subsided soil, whereas those of Alphaproteobacteria, Planctomycetes, and Deltaproteobacteria were mainly derived from the farmland soil. Fertilization affected the bacterial community composition in the reclaimed soil, and bacteria richness and diversity increased significantly with the accumulation of soil nutrients after 7 years of reclamation (p < 0.05). Moreover, soil properties, especially SOM and pH, were found to play a key role in the restoration of the bacterial community in the reclaimed soil. The results are helpful to the study of soil fertility improvement and ecological restoration in mining areas.



Sign in / Sign up

Export Citation Format

Share Document