scholarly journals Local Mortality Impacts Due to Future Air Pollution Under Climate Change Scenarios

2021 ◽  
Author(s):  
Vijendra Ingole ◽  
Asya Dimitrova ◽  
Jon Sampedro ◽  
Charfudin Sacoor ◽  
Sozinho Acacio ◽  
...  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Vijendra Ingole ◽  
Asya Dimitrova ◽  
Jon Sampedro ◽  
Charfudin Sacoor ◽  
Sozinho Acacio ◽  
...  

2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Dimitra Founda ◽  
Christos Giannakopoulos

<p>Historical changes, spanning 1971–2016, in the Athens Urban Heat Island (UHI) over summer were assessed by contrasting two air temperature records from established meteorological stations in urban and rural settings. When contrasting two 20-year historical periods (1976–1995 and 1996–2015), there is a significant difference in summer UHI regimes. The stronger UHI-intensity of the second period (1996–2015) is likely linked to increased pollution and heat input. Observations suggest that the Athens summer UHI characteristics even fluctuate on multi-annual basis. Specifically, the reduction in air pollution during the Greek Economic Recession (2008-2016) probable subtly changed the UHI regime, through lowering the frequencies of extremely hot days (T<sub>max</sub> > 37 °C) and nights (T<sub>min</sub> > 26 °C).</p><p>Subsequently, we examined the future temporal trends of two different UHIs in Athens (Greece) under three climate change scenarios. A five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) simulated air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5 and RCP8.5) were implanted in the simulations after 2005. The observed daily maximum and minimum air temperature data (T<sub>max</sub> and T<sub>min</sub>) from two historical UHI regimes (1976–1995 and 1996–2015, respectively) were used, separately, to bias-adjust the model simulations thus creating two sets of results.</p><p>This novel approach allowed us to assess future temperature developments in Athens under two different UHI intensity regimes. We found that the future frequency of days with T<sub>max</sub> > 37 °C in Athens was only different from rural background values under the intense UHI regime. There is a large increase in the future frequency of nights with T<sub>min</sub> > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site.</p><p>This study shows a large urban amplification of the frequency of extremely hot days and nights which is likely forced by increasing air pollution and heat input. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be also effective in reducing urban temperatures during extreme heat events in Athens under all future climate change scenarios. Such policies therefore have multiple benefits, including: reducing electricity (energy) needs, improving living quality and decreasing heat- and pollution related illnesses/deaths.</p><p> </p>


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suarez-Varela

<p>Air pollution has a serious impact on health and this problem will be aggravated under the action of climate change. This climate penalty can play an important role when trying to assess future impacts of air pollution on several pathologies. Among these diseases, the scientific literature is scarce when referring to the influence of atmospheric pollutants on neurodegenerative diseases for future climate change scenarios. Under this framework, this contribution evaluates the incidence of dementia (Alzheimer's disease and vascular dementia) occurring in Europe due to exposure of air pollution (essentially NO<sub>2</sub> and PM2.5) for the present climatic period (1991-2010) and for a future climate change scenario (RCP8.5, 2031-2050). The GEMM methodology has been applied to climatic air pollution simulations using the chemistry/climate regional model WRF-Chem. Present population data were obtained from NASA's Center for Socioeconomic Data and Applications (SEDAC); while future population projections for the year 2050 were derived from the United Nations (UN) Department of Economic and Social Affairs-Population Dynamics.</p><p>Overall, the estimated incidence of Alzheimer's disease and vascular dementia associated to air pollution over Europe is 498,000 [95% confidence interval (95% CI) 348,600-647,400] and 314,000 (95% CI 257,500-401,900) new cases per year, respectively. An important increase in the future incidence is projected (around 72% for both types of dementia) when considering the effect of climate change together with the foreseen changes in the dynamics of population (expected aging of European population). The climate penalty has a limited effect on the total changes of Alzheimer's disease and vascular dementia (approx. 0.5%), since the large increase in new annual cases over southern Europe is offset by the decrease of the incidence associated to these pathologies over more northern countries, favored by an improvement of air pollution caused by the projected enhancement of rainfall.</p>


2013 ◽  
Vol 121 (4) ◽  
pp. 661-671 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Juan J. Gómez-Navarro ◽  
Rocío Baró ◽  
Raquel Lorente ◽  
Nuno Ratola ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 637 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Christos Giannakopoulos ◽  
Dimitra Founda

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971–2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) to simulate air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006–2100. Two 20-year historical reference periods (1976–1995 and 1996–2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (Tmax and Tmin) for the two reference periods were perturbed to two future periods, 2046–2065 and 2076–2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with Tmax > 37 °C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with Tmin > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).


2022 ◽  
Vol 204 ◽  
pp. 112012
Author(s):  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suárez-Varela ◽  
Pedro Jiménez-Guerrero

2013 ◽  
Vol 13 (7) ◽  
pp. 3569-3585 ◽  
Author(s):  
G. B. Hedegaard ◽  
J. H. Christensen ◽  
J. Brandt

Abstract. So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM) driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC), total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC), mineral dust and secondary inorganic aerosols (SIA)) and total nitrogen (including NHx + NOy) has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5) enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy) in parts of the Arctic and at low latitudes is dominated by impacts of climate change.


2020 ◽  
Author(s):  
Patricia Tarín-Carrasco ◽  
Ulas Im ◽  
Laura Palacios-Peña ◽  
Pedro Jiménez-Guerrero

<p>Cities are hotspots for exposure to air pollution worldwide. The impact of atmospheric pollutants on human health is a main topic of concern related to health issues in urban areas; and there evidence that this problem will become worse under future climate change scenarios. One of the main anthropogenic pollutants released at cities that</p><p>impacts human mortality is particulate matter (PM). The riskiness of PM resides in both its composition and size. In particular, this study is focused on fine particles (particles with a diameter of 2.5μm or less, PM<sub>2.5</sub>). PM<sub>2.5 </sub>can reach lungs, pulmonary alveoli or even bloodstream being transported through the entire human body. In this sense, the emission of PM<sub>2.5 </sub>from combustion processes coming from energy production in cities can be a major health problem needing for mitigation policies regarding anthropogenic regulatory pollutants. In this sense, a bet for renewables energies can help the definition of mitigation strategies and can contribute to a better future urban air quality.</p><p>Henceforth, this study assesses the impacts of present (1991-2010) and future (RCP8.5,2031-2050) urban air pollution by fine particles on several Non-Communicable Diseases (NCD) mortality causes (Lung Cancer, Chronic Obstructive Pulmonary Disease, Ischaemic Heart Disease, Stroke, Lower Respiratory Infection and All diseases). Climate change scenarios were run by using the WRF-Chem online-coupled meteorological/chemistry model in framework of the Spanish REPAIR and ACEX projects, operated over an Euro-CORDEX compliant simulation domain. For the future scenarios, two alternatives under the RCP8.5 climate change scenarios are analysed: (1) business-as-usual energy production system and emissions, and (2) an scenario in which 80% of the European energy is obtained from renewable sources. The emission factors for energy production (g/GJ) were obtained from EMEP/EEA air pollutant emission inventory guidebook–2016.</p><p>The differences between both scenarios (future vs. present approach) provide the changes in future mortality caused by air pollution. We estimated the mortalities by using non-linear exposure-response functions. Furthermore, a novel contribution of this work is that changes in future population for the 2050 horizon have been taken into account. Different risk ratio and baseline mortalities for each pathology have been estimated in every age range (25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, +80 and all ages). Data was obtained from Institute for Health Medicine.</p><p>The results obtained indicate that almost 900,000 deaths per year in Europe are caused by PM<sub>2.5 </sub>for the present scenario. Generally, the mortality will increase for both future scenarios. The total mortality on the future RCP8.5 scenario accounts for 1,500,000 deaths for the business-as-usual energy production scenario and 1,480,000 for the future scenario considering 80% of renewable energy production. Eastern Europe is the area most benefited with the change of energy production on the future because the number of deaths will be lower. Stroke is the cause which count with high of deaths in Europe.</p><p> </p><p>Acknowledgments: Project ACEX (CGL-2017-87921-R) of the Spanish Ministry of Economy and Competitiveness, Fundación Biodiversidad of the Spanish Ministry for the Ecological Transition, and FEDER European program, for support to conduct this research.</p>


2012 ◽  
Vol 12 (9) ◽  
pp. 24501-24530 ◽  
Author(s):  
G. B. Hedegaard ◽  
J. H. Christensen ◽  
J. Brandt

Abstract. So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes and the importance of these signals needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM) driven on meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC), total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC), mineral dust and secondary inorganic aerosols (SIA)) and total nitrogen (including NHx + NOy) has been determined. For ozone the impacts of anthropogenic emissions dominates though a climate penalty is found in the Arctic region and the Northwestern Europe where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes increasing to be up to an order of magnitude larger close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5) enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy) in parts of the Arctic and at low latitudes is dominated by impacts of climate change.


Sign in / Sign up

Export Citation Format

Share Document