scholarly journals Dynamical properties of the derivative of the Weierstrass elliptic function

2009 ◽  
Vol 2 (3) ◽  
pp. 267-288
Author(s):  
Jeff Goldsmith ◽  
Lorelei Koss
Author(s):  
K. Saradha

AbstractLet t be any complex number different from the poles of a Weierstrass elliptic function ℘(z), having algebraic invariants. Then we estimate from below the sum where α and β are algebraic numbers. The estimate is given in terms of the heights of α and β and the degree of the field Q(α, β), where Q is the field of rationals.


2008 ◽  
Vol 63 (5-6) ◽  
pp. 273-279 ◽  
Author(s):  
Xian-Jing Lai ◽  
Jie-Fang Zhang ◽  
Shan-Hai Mei

With the aid of symbolic computation, nine families of new doubly periodic solutions are obtained for the (2+1)-dimensional long-wave and short-wave resonance interaction (LSRI) system in terms of the Weierstrass elliptic function method. Moreover Jacobian elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.


2011 ◽  
Vol 25 (14) ◽  
pp. 1931-1939 ◽  
Author(s):  
LIANG-MA SHI ◽  
LING-FENG ZHANG ◽  
HAO MENG ◽  
HONG-WEI ZHAO ◽  
SHI-PING ZHOU

A method for constructing the solutions of nonlinear evolution equations by using the Weierstrass elliptic function and its first-order derivative was presented. This technique was then applied to Burgers and Klein–Gordon equations which showed its efficiency and validality for exactly some solving nonlinear evolution equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Peng Guo ◽  
Xiang Wu ◽  
Liangbi Wang

The nonlinear wave equation of an elastic rod under finite deformation is solved by the extended mapping method. Abundant new exact traveling wave solutions for this equation are obtained, which contain trigonometric function solutions, solitary wave solutions, Jacobian elliptic function solutions, and Weierstrass elliptic function solutions. The method can be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics.


1987 ◽  
Vol 35 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Renfrey B. Potts

The Weierstrass elliptic function satisfies a nonlinear first order and a nonlinear second order differential equation. It is shown that these differential equations can be discretized in such a way that the solutions of the resulting difference equations exactly coincide with the corresponding values of the elliptic function.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Abdelfattah El Achab

Travelling wave solutions for the generalized Boussinesq wave equation are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given, as well as integrable ones.


Sign in / Sign up

Export Citation Format

Share Document