scholarly journals Asymptotic homogenization model for three-dimensional network reinforced composite structures

2007 ◽  
Vol 2 (4) ◽  
pp. 613-632 ◽  
Author(s):  
Krishna Challagulla ◽  
Anastasis Georgiades ◽  
Alexander Kalamkarov
1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2020 ◽  
Vol 10 (2) ◽  
pp. 133-148
Author(s):  
Ankaj Kaundal ◽  
Pravin Kumar ◽  
Rajendra Awasthi ◽  
Giriraj T. Kulkarni

Aim: The study was aimed to develop mucoadhesive buccal tablets using Aster ericoides leaves mucilage. Background : Mucilages are naturally occurring high-molecular-weight polyuronides, which have been extensively studied for their application in different pharmaceutical dosage forms. Objective: The objective of the present research was to establish the mucilage isolated from the leaves of Aster ericoides as an excipient for the formulation of the mucoadhesive buccal tablet. Method: The mucilage was isolated from the leaves of Aster ericoides by maceration, precipitated with acetone and characterized. Tablets were prepared using wet granulation technique and evaluated for various official tests. Results: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Conclusion: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Other: However, to prove the potency of the polymer, in vivo bioavailability studies in human volunteers are needed along with chronic toxicity studies in suitable animal models.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


Sign in / Sign up

Export Citation Format

Share Document