scholarly journals Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species Anopheles stephensi

BioTechniques ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 172-179 ◽  
Author(s):  
Rebeca Carballar-Lejarazú ◽  
Adam Kelsey ◽  
Thai Binh Pham ◽  
Eric P Bennett ◽  
Anthony A James

CRISPR/Cas9 technology is a powerful tool for the design of gene-drive systems to control and/or modify mosquito vector populations; however, CRISPR/Cas9-mediated nonhomologous end joining mutations can have an important impact on generating alleles resistant to the drive and thus on drive efficiency. We demonstrate and compare the insertions or deletions (indels) detection capabilities of two techniques in the malaria vector mosquito Anopheles stephensi: Indel Detection by Amplicon Analysis (IDAA™) and Droplet Digital™ PCR (ddPCR™). Both techniques showed accuracy and reproducibility for indel frequencies across mosquito samples containing different ratios of indels of various sizes. Moreover, these techniques have advantages that make them potentially better suited for high-throughput nonhomologous end joining analysis in cage trials and contained field testing of gene-drive mosquitoes.

Author(s):  
Adriana Adolfi ◽  
Valentino M. Gantz ◽  
Nijole Jasinskiene ◽  
Hsu-Feng Lee ◽  
Kristy Hwang ◽  
...  

ABSTRACTThe development of Cas9/gRNA-mediated gene-drive systems has bolstered the advancement of genetic technologies for controlling vector-borne pathogen transmission. These include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of vector insects, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. We developed a recoded gene-drive rescue system for population modification in the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and a functional resistant allele does not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.


2019 ◽  
Author(s):  
Héctor M. Sánchez C. ◽  
Jared B. Bennett ◽  
Sean L. Wu ◽  
Gordana Rašić ◽  
Omar S. Akbari ◽  
...  

AbstractBackgroundThe discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently-engineered threshold-dependent gene drive systems - reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UDMEL - to explore their ability to be confined and remediated.ResultsWe simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UDMEL requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely.ConclusionsOur analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.


2021 ◽  
Author(s):  
Bhavin S Khatri ◽  
Austin Burt

Evolution of resistance is a major barrier to successful deployment of gene drive systems to suppress natural populations. Multiplexed guide RNAs that require resistance mutations in all target cut sites is a promising strategy to overcome resistance. Using novel stochastic simulations that accurately model evolution at very large population sizes, we explore the probability of resistance due to three important mechanisms: 1) non-homologous end-joining mutations, 2) single nucleotide mutants arising de novo or, 3) single nucleotide polymorphisms pre-existing as standing variation. If the fraction of functional end-joining mutants is rare, we show that standing variation dominates, via a qualitatively new phenomenon where weakly deleterious variants significantly amplify the probability of multi-site resistance. This means resistance can be probable even with many target sites in not very large populations. This result has broad application to resistance arising in multi-site evolutionary scenarios including the evolution of vaccine escape mutations in large populations.


2015 ◽  
Vol 112 (13) ◽  
pp. 4038-4043 ◽  
Author(s):  
Sanjay Basu ◽  
Azadeh Aryan ◽  
Justin M. Overcash ◽  
Glady Hazitha Samuel ◽  
Michelle A. E. Anderson ◽  
...  

Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24–90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2–3%, similar to traditional transposon- or ΦC31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems.


2018 ◽  
Author(s):  
Christina M. Bergey ◽  
Martin Lukindu ◽  
Rachel M. Wiltshire ◽  
Michael C. Fontaine ◽  
Jonathan K. Kayondo ◽  
...  

AbstractDocumenting isolation is notoriously difficult for species with vast polymorphic populations. High proportions of shared variation impede estimation of connectivity, even despite leveraging information from many genetic markers. We overcome these impediments by combining classical analysis of neutral variation with assays of the structure of selected variation, demonstrated using populations of the principal African malaria vector Anopheles gambiae. Accurate estimation of mosquito migration is crucial for efforts to combat malaria. Modeling and cage experiments suggest that mosquito gene drive systems will enable malaria eradication, but establishing safety and efficacy requires identification of isolated populations in which to conduct field-testing. We assess Lake Victoria islands as candidate sites, finding one island 30 kilometers offshore is as differentiated from mainland samples as populations from across the continent. Collectively, our results suggest sufficient contemporary isolation of these islands to warrant consideration as field-testing locations and illustrate shared adaptive variation as a useful proxy for connectivity in highly polymorphic species.


2016 ◽  
Author(s):  
Andrew M. Scharenberg ◽  
Barry L Stoddard ◽  
Raymond J Monnat ◽  
Anthony Nolan

AbstractThere is intense interest surrounding the use of gene editing nucleases in gene drive systems to control agricultural insect pests and insect vectors of infectious diseases such as malaria, dengue and Zika virus. While gene drive systems offer immense promise for the beneficial modification of deleterious insect populations, their unique mechanism of action also raises novel safety concerns and regulatory issues. A recent US National Academies of Science report provides a list of potential regulatory issues associated with implementation of homologous recombination (HR)-mediated gene drive systems, based on the premise that all such systems would exhibit similar biological behaviors. Here we examine how HR-mediated gene drive systems based on different gene editing nuclease platforms could be affected by mutations that occur during host cell transcription, genome replication, and, in conjunction with gene editing nuclease activity, during HR-mediated gene drive. Our analysis suggests that the same feature that makes RNA-guided nucleases such attractive research tools—their ease of reprogramming by alterations to their guide RNA components—might also contribute to increased rates of retargeting that could influence the long term behavior of RNA-guided gene drive systems. Predictability of behavior over time is an issue that should be addressed by in-depth risk assessment before field testing of organisms incorporating nuclease-mediated gene drives.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Adriana Adolfi ◽  
Valentino M. Gantz ◽  
Nijole Jasinskiene ◽  
Hsu-Feng Lee ◽  
Kristy Hwang ◽  
...  

Abstract Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.


Author(s):  
BALU SUBASH ◽  
PERIYASAMY VIJAYAN

Objective: Mosquitoes are insect vectors responsible for the transmission of parasitic and viral infections to millions of people worldwide, with substantial morbidity and mortality. Insecticides of botanical origin may serve as suitable alternative bio-control techniques in the future. Methods: The egg hatchability, growth regulatory, longevity, fecundity, and larvicidal activity of crude methanol leaf extract of Hygrophila auriculata were assayed for their toxicity tested against malarial vector mosquito, Anopheles stephensi. Results: The eggs, larvae, larvae/pupae, and cumulative mortality were observed hatching rates for 100 ppm, 0–18 h (18 h exposed) at 24, 48, and 72 h, respectively, and mortality was 33.4, 44.6, 17.9, and 95.9% methanolic extract treatment, with the lethal concentration 50 (LC50)/LC90 values were 35.420 28/75.600 ppm. Effect of methanolic extract was larval, pupal, and adult duration and water extracts of caused longest delayed development from 16.6 days larvae, 7.5 days for pupae and longevity of adult female greatly reduced from 25.9 days and fecundity also reduced from 68.0 at 150 ppm. The larvicidal activity of methanol extract was decreased at 48 h as for instars larvae 63.44/271.95 ppm (I), 57.55/272.48 ppm (II); 62.49/301.22 ppm (III); 67.69/330.48 ppm (IV), and 76.99/343.82 ppm (pupae), respectively. Conclusion: These results suggest that the methanol leaf extract has the potential to be used as an ideal eco-friendly approach for the control of mosquito vector. Therefore, this study provides on the mosquito eggs, larvae, and pupae activities of these plant methanol extract against A. stephensi.


2020 ◽  
Author(s):  
Gerard Terradas ◽  
Anna B. Buchman ◽  
Jared B. Bennett ◽  
Isaiah Shriner ◽  
John M. Marshall ◽  
...  

AbstractCRISPR-based gene drive systems, which copy themselves based on gene conversion mediated by the homology directed repair (HDR) pathway, have potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway that are rendered resistant to Cas9 cleavage can interrupt the spread of genedrive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences to restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles, combined with recessive Mendelian processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that were inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multi-generational cage trials, sGD follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage or lethal/sterile mosaic phenotypes, leading to inherently confineable drive outcomes.


Sign in / Sign up

Export Citation Format

Share Document